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Abstract

We develop a definition of protocol security relying on game-theoretic notions of implemen-
tation. We show that a natural special case of this this definition is equivalent to a variant of
the traditional cryptographic definition of protocol security; this result shows that, when tak-
ing computation into account, the two approaches used for dealing with “deviating” players in
two different communities—Nash equilibrium in game theory and zero-knowledge “simulation”
in cryptography—are intimately related. Other special cases of our definition instead lead to
more practical protocols and circumvent known lower bounds with respect to the cryptographic
notion of security.
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1 Introduction

It is often simpler to design and analyze mechanisms when assuming that players have access
to a trusted mediator through which they can communicate. However, such a trusted mediator
can be hard to find. A central question in both cryptography and game theory is investigating
under what circumstances mediators can be replaced—or implemented—by simple “unmediated”
communication between the players. There are some significant differences between the approaches
used by the two communities to formalize this question.

The cryptographic notion of a secure computation [Goldreich, Micali, and Wigderson 1986]
considers two types of players: honest players and malicious players. Honest players are assumed
to faithfully execute the prescribed protocol using their intended input; malicious players, on the
other hand, are assumed to do anything in their power to undermine the security of honest players.
Roughly speaking, a protocol Π is said to securely implement the mediator F if (1) the malicious
players cannot influence the output of the communication phase any more than they could have by
communicating directly with the mediator; this is called correctness, and (2) the malicious players
cannot “learn” more than what can be efficiently computed from only the output of mediator; this
is called privacy. These properties are formalized through the zero-knowledge simulation paradigm
[Goldwasser, Micali, and Rackoff 1989]: roughly, we require that any “harm” done by an adversary
in the protocol execution could be simulated by a polynomially-bounded Turing machine, called
the simulator, that communicates only with the mediator. Three levels of security are usually
considered: perfect, statistical, and computational. Perfect security guarantees that correctness and
privacy hold with probability 1; statistical security allows for a “negligible” error probability; and
computational security considers only adversaries that can be implemented by

The traditional game-theoretic notion of implementation (see [Forges 1986; Forges 1990]) does
not explicitly consider properties such as privacy and correctness, but instead requires that the
implementation preserve a given Nash equilibrium of the mediated game. Roughly speaking, the
game-theoretic notion of implementation says that a strategy profile ~σ implements a mediator F
if, as long as it is a Nash equilibrium for the players to tell the mediator their type and output
what the mediator recommends, then ~σ is a Nash equilibrium in the “cheap talk” game (where the
players just talk to each other, rather than talking to a mediator) that has the same distribution
over outputs as when the players talk to the mediator. In other words, whenever a set of parties
have incentives to tell the mediator their inputs, they also have incentives to honestly use ~σ using
the same inputs, and get the same distribution over outputs in both cases.

The key differences between the notions are that the game-theoretic notion does not consider
privacy issues and the cryptographic notion does not consider incentives: the game-theoretic notion
talks about preserving Nash equilibria (which cannot be done in the cryptographic notion, since
there are no incentives), while the cryptographic notion talks about security against malicious
adversaries.

Although the cryptographic notion does not consider incentives, it is nonetheless stronger than
the game-theoretic notion. More precisely, the game-theoretic notion of implementation; that is,
all perfectly-secure implementations are also game-theoretic implementations.1 A corresponding
implication holds for statistically- and computationally-secure implementations if we consider ap-
propriate variants of game-theoretic implementation that require only that running Π is an ε-Nash
equilibrium, resp., a “computational” ε-Nash equilibrium, where players are restricted to using
polynomially-bounded Turing machines; see [Dodis, Halevi, and Rabin 2000; Dodis and Rabin
2007; Lepinski, Micali, Peikert, and Shelat 2004].2

1For completness, we formalize this in Proposition 4.1.
2[Dodis, Halevi, and Rabin 2000; Lepinski, Micali, Peikert, and Shelat 2004] consider only implementations of

correlated equilibrium, but the same proof extends to arbitrary mediators as well.
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The converse implication does not hold. Since the traditional game-theoretic notion of im-
plementation does not consider computational cost (indeed, more generally, traditional solution
concepts in game theory do not take computation into account), it cannot take into account is-
sues like computational efficiency, or the computational advantages possibly gained by using Π,
issues that are critical in the cryptographic notion. Another difference is that the game-theoretic
definition does not consider coalitions of players.

There have been several recent works that attempt to bridge these two notions (e.g., [Abraham,
Dolev, Gonen, and Halpern 2006; Dodis, Halevi, and Rabin 2000; Gordon and Katz 2006; Halpern
and Teadgue 2004; Izmalkov, Lepinski, and Micali 2008; Kol and Naor 2008; Shoham and Tennen-
holtz 2005])). Most notably, Izmalkov, Lepinski and Micali [Izmalkov, Lepinski, and Micali 2008]
(see also [Kol and Naor 2008]) present a “hybrid” definition, where correctness is defined through
the game-theoretic notion,3 and privacy through the zero-knowledge paradigm. In other words,
the privacy part—which is defined through the cryptographic paradigm—recognizes that compu-
tation is costly to players. But the incentive part—which is defined through the game-theoretic
paradigm—does not. As a consequence, if computation is a costly resource for the players, none
of the earlier definitions provide explicit guarantees about players’ incentives to correctly execute
a protocol with their intended input. For instance, a player might not want to execute a protocol
if doing so is too computationally expensive. Similarly, a player i might want to change its input if
executing the protocol gives some other player j a computational advantage in determining player
i’s input.

We suggest a different approach, based on the game-theoretic approach. Roughly speaking, we
say that Π implements a mediator F if for all games G—including games where computation is
costly—that use F for which (the utilities in G are such that) it is an equilibrium for the players
to truthfully tell F their inputs, running Π on the same set of inputs (and with the same utility
functions) is also an equilibrium and produces the same distribution over outputs as F .4 To model
games where computation is costly, we rely on (and extend) a framework we introduced in a com-
panion paper [Halpern and Pass 2008], which generalizes earlier approaches in the literature (e.g.,
[Rubinstein 1986; Ben-Sasson, Kalai, and Kalai 2007]). Roughly speaking, whereas in traditional
games, the utility of a player only depends on the types and the actions of players, in a computa-
tional game, the players’ utilities depend also on the complexities of the strategies of the players;
the complexity of a strategy—represented as a Turing machine—could for instance, represent the
running time of, or space used by, the machine on a particular input. (To provide security with
respect to coalitions of players, we also allow G to be a coalitional game [Neumann and Morgenstern
1947].)

Note that by requiring the implementation to work for all games, not only do we ensure that
players have proper incentives to execute protocols with their intended input, even if they consider
computation a costly resource, but we get the privacy and correctness requirements “for free”. For
suppose that, when using Π, some information about i’s input is revealed to j. We consider a
zero-sum game G where a player j gains some significant utility by having this information. In this
game, i will not want to use Π. However, our notion of implementation requires that, even with
the utilities in G, i should want to use Π if i is willing to use the mediator F . (This argument
depends on the fact that we consider games where computation is costly; the fact that j gains
information about i’s input may mean that j can do some computation faster with this information
than without it.) As a consequence, our definition gives a relatively simple (and strong) way of

3In fact, Izmalkov, Lepinski, and Micali [2008] consider an even stronger notion of implementation, which they
call perfect implementation. See Section 3 for more details.

4While the definitions of implementation in the game-theory literature (e.g., [Forges 1986; Forges 1990]) do not
stress the uniformity of the implementation—that is, the fact that it works for all games—the implementations
provided are in fact uniform in this sense.
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formalizing the security of protocols, relying only on basic notions from game theory.
Perhaps surprisingly, we show that, under weak restrictions on the utility functions of the players

(essentially, that players never prefer to compute more), our notion of implementation is equivalent
to a variant of the cryptographic notion of precise secure computation, recently introduced by Micali
and Pass [2006]. Roughly speaking, the notion of precise secure computation requires that any harm
done by an adversary in a protocol execution could have been done also by a simulator, using the
same complexity distribution as the adversary. In contrast, the traditional definition of secure
computation requires only that the simulator’s complexity preserves the worst-case complexity of
the adversary. By considering specific measures of complexity (such as worst-case running time
and space) we can obtain a game-theoretic characterization of the traditional (i.e., “non-precise”)
notion of secure computation.

This result shows that the two approaches used for dealing with “deviating” players in two differ-
ent communities—Nash equilibrium in game theory, and zero-knowledge “simulation” in cryptography—
are intimately connected; indeed, they are essentially equivalent in the context of implementing
mediators, once we take the cost of computation into account. It follows immediately from our
result that known protocols, such as those in [Ben-Or, Goldwasser, and Wigderson 1988; Canetti
2001; Goldreich, Micali, and Wigderson 1987; Izmalkov, Lepinski, and Micali 2008; Micali and
Pass 2006; Micali and Pass 2007], satisfy our game-theoretic notion of implementation. Moreover,
lower bounds for the traditional notion of secure computation immediately yield lower bounds for
implementations.

Our equivalence result might seem like a negative result: it demonstrates that considering only
rational players (as opposed to arbitrary malicious players) does not facilitate protocol design. We
emphasize, however, that for the equivalence to hold, we must consider implementations with only
weak restrictions on the utility functions. In some many settings, it might be reasonable to consider
stronger restrictions on the utility functions of players: for instance, that players strictly prefer to
compute less, that players do not want to be caught “cheating”, or that players might not be con-
cerned about the privacy of part of their inputs. As we show, it is easier to provide implementations
for such (restricted) classes of games, allowing us to circumvent classical impossibility results (e.g.,
[Cleve 1986]) for the traditional notion of secure computation. We believe that this generality is
an important advantage of a notion of security that does not rely on the zero-knowledge simula-
tion paradigm.5 Indeed, our work has already lead to several followups: Micali and Shelat [2009]
consider costly computation in the context of secret-sharing, Rosen and Shelat [2000] consider it in
the context of concurrent security, and Miltersen et al. [2009] provide an alternative approach for
capturing privacy using utility.

2 A Computational Game-Theoretic Framework

2.1 Bayesian Games

We model costly computation using Bayesian machine games, introduced by us in a companion
paper [Halpern and Pass 2008]. To explain our approach, we first review the standard notion of a
Bayesian game. A Bayesian game is a game of incomplete information, where each player makes a
single move. The “incomplete information” is captured by assuming that nature makes an initial
move, and chooses for each player i a type in some set Ti. Player i’s type can be viewed as describing
i’s private information. For ease of exposition, we assume in this paper that the set N of players is

5We mention that almost all general notions of security have been based on the zero-knowledge simulation
paradigm. One notable exception is the definition of input-indistingushable computation of Micali, Pass and Rosen
[2006]. This notion is useful in circumventing impossibility results regarding concurrency, but still suffers from
impossibility results [Cleve 1986].
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always [m] = {1, . . . ,m}, for some m. If N = [m], the set T = T1× . . .×Tm is the type space. As is
standard, we assume that there is a commonly-known probability distribution Pr on the type space
T . Each player i must choose an action from a space Ai of actions. Let A = A1 × . . .×An be the
set of action profiles. A Bayesian game is characterized by the tuple ([m], T, A,Pr, ~u), where [m] is
the set of players, T is the type space, A is the set of joint actions, and ~u is the utility function,
where ui(~t,~a) is player i’s utility (or payoff) if the type profile is ~t and action profile ~a is played.

In general, a player’s choice of action will depend on his type. A strategy for player i is a function
from Ti to ∆(Ai) (where, as usual, we denote by ∆(X) the set of distributions on the set X). If σ is a
strategy for player i, t ∈ Ti and a ∈ Ai, then σ(t)(a) denotes the probability of action a according to
the distribution on acts induced by σ(t). Given a joint strategy ~σ, we can take u~σi to be the random
variable on the type space T defined by taking u~σi (~t) =

∑
~a∈A(σ1(t1)(a1)×. . .×σm(tm)(am))ui(~t,~a).

Player i’s expected utility if ~σ is played, denoted Ui(~σ), is then just EPr[u~σi ] =
∑
~t∈T Pr(~t)u~σi (~t).

2.2 Bayesian Machine Games

In a Bayesian game, it is implicitly assumed that computing a strategy—that is, computing what
move to make given a type—is free. We want to take the cost of computation into account here.
To this end, we consider what we call Bayesian machine games, where we replace strategies by
machines. For definiteness, we take the machines to be Turing machines, although the exact
choice of computing formalism is not significant for our purposes. Given a type, a strategy in a
Bayesian game returns a distribution over actions. Similarly, given as input a type, the machine
returns a distribution over actions. As is standard, we model the distribution by assuming that the
machine actually gets as input not only the type, but a random string of 0s and 1s (which can be
thought of as the sequence of heads and tails), and then (deterministically) outputs an action. Just
as we talk about the expected utility of a strategy profile in a Bayesian game, we can talk about
the expected utility of a machine profile in a Bayesian machine game. However, we can no longer
compute the expected utility by just taking the expectation over the action profiles that result from
playing the game. A player’s utility depends not only on the type profile and action profile played
by the machine, but also on the “complexity” of the machine given an input. The complexity of
a machine can represent, for example, the running time or space usage of the machine on that
input, the size of the program description, or some combination of these factors. For simplicity, we
describe the complexity by a single number, although, since a number of factors may be relevant, it
may be more appropriate to represent it by a tuple of numbers in some cases. (We can, of course,
always encode the tuple as a single number, but in that case, “higher” complexity is not necessarily
worse.) Note that when determining player i’s utility, we consider the complexity of all machines
in the profile, not just that of i’s machine. For example, i might be happy as long as his machine
takes fewer steps than j’s.

We assume that nature has a type in {0, 1}∗. While there is no need to include a type for
nature in standard Bayesian games (we can effectively incorporate nature’s type into the type of
the players), once we take computation into account, we obtain a more expressive class of games
by allowing nature to have a type (since the complexity of computing the utility may depend on
nature’s type). We assume that machines take as input strings of 0s and 1s and output strings of 0s
and 1s. Thus, we assume that both types and actions can be represented as elements of {0, 1}∗. We
allow machines to randomize, so given a type as input, we actually get a distribution over strings.
To capture this, we assume that the input to a machine is not only a type, but also a string chosen
with uniform probability from {0, 1}∞ (which we can view as the outcome of an infinite sequence
of coin tosses). The machine’s output is then a deterministic function of its type and the infinite
random string.

We use the convention that the output of a machine that does not terminate is a fixed special
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symbol ω. We define a view to be a pair (t, r) of two bitstrings; we think of t as that part of the
type that is read, and r is the string of random bits used. (Our definition is slightly different from
the traditional way of defining a view, in that we include only the parts of the type and the random
sequence actually read. If computation is not taken into account, there is no loss in generality in
including the full type and the full random sequence, and this is what has traditionally been done
in the literature. However, when computation is costly, this might no longer be the case.) We
denote by t; r a string in {0, 1}∗; {0, 1}∗ representing the view. (Note that here and elsewhere, we
use “;” as a special symbol that acts as a separator between strings in {0, 1}∗.) If v = (t; r) and r
is a finite string, we take M(v) to be the output of M given input type t and random string r · 0∞.

We now briefly review our computational game-theoretic framework [Halpern and Pass 2008],
which will form the basis of our game-theoretic definition of security. We then introduce some
additional notions that will be necessary to capture security. We use a complexity function C :
M × {0, 1}∗; {0, 1}∗ ∪ {0, 1}∞ → IN , where M denotes the set of Turing machines to describe the
complexity of a machine given a view. If t ∈ {0, 1}∗ and r ∈ {0, 1}∞, we identify C (M, t; r) with
C (M, t; r′), where r′ is the finite prefix of r actually used by M when running on input t with
random string r.

For now, we assume that machines run in isolation, so the output and complexity of a machine
does not depend on the machine profile. We remove this restriction in the next section, where
we allow machines to communicate with mediators (and thus, implicitly, with each other via the
mediator).

Definition 2.1 (Bayesian machine game) A Bayesian machine game G is described by a tuple
([m],M, T,Pr, C1, . . . ,Cm, u1, . . . , um), where

• [m] = {1, . . . ,m} is the set of players;
• M is the set of possible machines;
• T ⊆ ({0, 1}∗)m+1 is the set of type profiles, where the (m+ 1)st element in the profile corre-

sponds to nature’s type;
• Pr is a distribution on T ;
• Ci is a complexity function;
• ui : T ×({0, 1}∗)m×INm → IR is player i’s utility function. Intuitively, ui(~t,~a,~c) is the utility

of player i if ~t is the type profile, ~a is the action profile (where we identify i’s action with
Mi’s output), and ~c is the profile of machine complexities.

We can now define the expected utility of a machine profile. Given a Bayesian machine game
G = ([m],M,Pr, T, ~C , ~u) and ~M ∈Mm, define the random variable uG,

~M
i on T × ({0, 1}∞)m (i.e.,

the space of type profiles and sequences of random strings) by taking

uG,
~M

i (~t, ~r) = ui(~t,M1(t1; r1), . . . ,Mm(tm; rm),C1(M1, t1; r1), . . . ,Cm(Mm, tm)).

Note that there are two sources of uncertainty in computing the expected utility: the type t and
realization of the random coin tosses of the players, which is an element of ({0, 1}∞)k. Let PrkU
denote the uniform distribution on ({0, 1}∞)k. Given an arbitrary distribution PrX on a space X,
we write Pr+k

X to denote the distribution PrX ×PrkU on X × ({0, 1}∞)k. If k is clear from context
or not relevant, we often omit it, writing PrU and Pr+

X . Thus, given the probability Pr on T , the

expected utility of player i in game G if ~M is used is the expectation of the random variable uG,
~M

i

with respect to the distribution Pr+ (technically, Pr+m): UGi ( ~M) = EPr+ [uG,
~M

i ]. Note that this
notion of utility allows an agent to prefer a machine that runs faster to one that runs slower, even if
they give the same output, or to prefer a machine that has faster running time to one that gives a
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better output. Because we allow the utility to depend on the whole profile of complexities, we can
capture a situation where i can be “happy” as long as his machine runs faster than j’s machine.
Of course, an important special case is where i’s utility depends only on his own complexity. All
of our results continue to hold if we make this restriction.

Given the definition of utility above, we can now define (ε-) Nash equilibrium in the standard
way.

Definition 2.2 (Nash equilibrium in machine games) Given a Bayesian machine game G =
([m],M, T,Pr, ~C , ~u), a machine profile ~M ∈ Mm, and ε ≥ 0, Mi is an ε-best response to ~M−i if,
for every M ′i ∈M,

UGi [(Mi, ~M−i)] ≥ UGi [(M ′i , ~M−i)]− ε.

(As usual, ~M−i denotes the tuple consisting of all machines in ~M other than Mi.) ~M is an ε-Nash
equilibrium of G if, for all players i, Mi is an ε-best response to ~M−i. A Nash equilibrium is a
0-Nash equilibrium.

For further intuition into this notion, we refer the reader to our companion paper [Halpern and
Pass 2008] where we provide a more in-depth study of traditional game-theoretic questions (such as
existence of Nash equilibria) for computational games, and show how computational considerations
can help explain experimentally-observed phenomena in well-studied games in a psychologically
appealing way.

One immediate advantage of taking computation into account is that we can formalize the intu-
ition that ε-Nash equilibria are reasonable, because players will not bother changing strategies for a
gain of ε. Intuitively, the complexity function can “charge” ε for switching strategies. Specifically,
an ε-Nash equilibrium ~M can be converted to a Nash equilibrium by modifying player i’s complex-
ity function to incorporate the overhead of switching from Mi to some other strategy, and having
player i’s utility function decrease by ε′ > ε if the switching cost is nonzero; we omit the formal
details here. Thus, the framework lets us incorporate explicitly the reasons that players might be
willing to play an ε-Nash equilibrium. This justification of ε-Nash equilibrium seems particularly
appealing when designing mechanisms (e.g., cryptographic protocols) where the equilibrium strat-
egy is made “freely” available to the players (e.g., it is accessible on a web-page), but any other
strategy requires some implementation cost.

In order to define our game-theoretic notion of protocol security, we need to introduce some
extensions to the basic framework of [Halpern and Pass 2008]. Specifically, we will be interested
only in equilibria that are robust in a certain sense, and we want equilibria that deal with deviations
by coalitions, since the security literature allows malicious players that deviate in a coordinated
way. Furthemore, we need to formally define mediated games.

2.3 Computationally Robust Nash Equilibrium

Computers get faster, cheaper, and more powerful every year. Since utility in a Bayesian machine
game takes computational complexity into account, this suggests that an agent’s utility function
will change when he replaces one computer by a newer computer. We are thus interested in robust
equilibria, intuitively, ones that continue to be equilibria (or, more precisely, ε-equilibria for some
appropriate ε) even if agents’ utilities change as a result of upgrading computers.

Definition 2.3 (Computationally robust Nash equilibrium) Let p : IN → IN . The com-
plexity function C ′ is at most a p-speedup of the complexity function C if, for all machines M and
views v,

C ′(M,v) ≤ C (M, v) ≤ p(C ′(M, v)).

6



Game G′ = ([m′],M′,Pr′, ~C ′, ~u′) is at most a p-speedup of game G = ([m],M,Pr, ~C , ~u) if m′ = m,
Pr = Pr′ and ~u = ~u′ (i.e., G′ and G′ differ only in their complexity and machine profiles), and C ′i
is at most a p-speedup of Ci, for i = 1, . . . ,m. Mi is a p-robust ε-best response to ~M−i in G, if for
every game G̃ that is at most a p-speedup of G, Mi is an ε-best response to ~M−i. ~M is a p-robust
ε-equilibrium for G if, for all i, Mi is an p-robust ε-best response to ~M−i.

Intuitively, if we think of complexity as denoting running time and C describes the running time
of machines (i.e., programs) on an older computer, then C ′ describes the running time of machines
on an upgraded computer. For instance, if the upgraded computer runs at most twice as fast as the
older one (but never slower), then C ′ is a 2̄-speedup of C , where k̄ denotes the constant function
k. Clearly, if ~M is a Nash equilibrium of G, then it is a 1̄-robust equilibrium. We can think of
p-robust equilibrium as a refinement of Nash equilibrium for machine games, just like sequential
equilibrium [Kreps and Wilson 1982] or perfect equilibrium [Selten 1975]; it provides a principled
way of ignoring “bad” Nash equilibria. Note that in games where computation is free, every Nash
equilibrium is also computationally robust.

2.4 Coalition Machine Games

We strengthen the notion of Nash equilibrium to allow for deviating coalitions. Towards this goal,
we consider a generalization of Bayesian machine games called coalition machine games, where,
in the spirit of coalitional games [Neumann and Morgenstern 1947], each subset of players has a
complexity function and utility function associated with it. In analogy with the traditional notion
of Nash equilibrium, which considers only “single-player” deviations, we consider only “single-
coalition” deviations.

More precisely, given a subset Z of [m], we let −Z denote the set [m]/Z. We say that a machine
M ′Z controls the players in Z if M ′Z controls the input and output tapes of the players in set Z (and
thus can coordinate their outputs). In addition, the adversary that controls Z has its own input
and output tape. A coalition machine game G is described by a tuple ([m],M,Pr, ~C , ~u), where ~C
and ~u are sequences of complexity functions CZ and utility functions uZ , respectively, one for each
subset Z of [m]; m,M, and Pr are defined as in Definition 2.1. In contrast, the utility function uZ
for the set Z is a function T × ({0, 1}∗)m × (IN × INm−|Z|+1)→ IR, where uZ(~t,~a, (cZ ,~c−Z)) is the
utility of the coalition Z if ~t is the (length m + 1) type profile, ~a is the (length m) action profile
(where we identify i’s action as player i output), cZ is the complexity of the coalition Z, and ~c−Z
is the (length m − |Z|) profile of machine complexities for the players in −Z. The complexity cZ
is a measure of the complexity according to whoever controls coalition Z of running the coalition.
Note that even if the coalition is controlled by a machine M ′Z that lets each of the players in Z
perform independent computations, the complexity of M ′Z is not necessarily some function of the
complexities ci of the players i ∈ Z (such as the sum or the max). Moreover, while cooperative
game theory tends to focus on superadditive utility functions, where the utility of a coalition is
at least the sum of the utilities of any partition of the coalition into sub-coalitions or individual
players, we make no such restrictions; indeed when taking complexity into account, it might very
well be the case that larger coalitions are more expensive than smaller ones. Also note that, in our
calculations, we assume that, other than the coalition Z, all the other players play individually (so
that we use ci for i /∈ Z); there is at most one coalition in the picture. Having defined uZ , we can
define the expected utility of the group Z in the obvious way.

The benign machine for coalition Z, denoted M b
Z , is the one where that gives each player i ∈ Z

its true input, and each player i ∈ Z outputs the output of Mi; M b
Z write nothing on its output

tape. Essentially, the benign machine does exactly what all the players in the coalition would have
done anyway. We now extend the notion of Nash equilibrium to deal with coalitions; it requires
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that in an equilibrium ~M , no coalition does (much) better than it would using the benign machine,
according to the utility function for that coalition.

Definition 2.4 (Nash equilibrium in coalition machine games) Given an m-player coalition
machine game G, a machine profile ~M , a subset Z of [m] and ε ≥ 0, M b

Z is an ε-best response to
~M−Z if, for every coalition machine M ′Z ∈M,

UGZ [(M b
Z ,

~M−Z)] ≥ UGZ [(M ′Z , ~M−Z)]− ε.

Given a set Z of subsets of [m], ~M is a Z-safe ε-Nash equilibrium for G if, for all Z ∈ Z, M b
Z is

an ε-best response to ~M−Z .

Our notion of coalition games is quite general. In particular, if we disregard the costs of
computation, it allows us to capture some standard notions of coalition resistance in the litera-
ture, by choosing uZ appropriately. For example, Aumann’s [1959] notion of strong equilibrium
requires that, for all coalitions, it is not the case that there is a deviation that makes everyone
in the coalition strictly better off. To capture this, fix a profile ~M , and define u ~M

Z (M ′Z , ~M
′
−Z) =

mini∈Z ui(M ′Z , ~M
′
−Z) − ui( ~M).6 We can capture the notion of k-resilient equilibrium [Abraham,

Dolev, Gonen, and Halpern 2006; Abraham, Dolev, and Halpern 2008], where the only deviations
allowed are by coalitions of size at most k, by restricting Z to consist of sets of cardinality at most
k (so a 1-resilient equilibrium is just a Nash equilibrium). Abraham et al. [2006, 2008] also consider
a notion of strong k-resilient equilibrium, where there is no deviation by the coalition that makes
even one coalition member strictly better off. We can capture this by replacing the min in the
definition of u ~M

Z by max.

2.5 Machine Games with Mediators

Up to now we have assumed that the only input a machine receives is the initial type. This
is appropriate in a normal-form game, but does not allow us to consider game where players
can communicate with each other and (possibly) with a trusted mediator. We now extend
Bayesian machine games to allow for communication. For ease of exposition, we assume that all
communication passes between the players and a trusted mediator. Communication between the
players is modeled by having a trusted mediator who passes along messages received from the
players. Thus, we think of the players as having reliable communication channels to and from a
mediator; no other communication channels are assumed to exist.

The formal definition of a Bayesian machine game with a mediator is similar in spirit to that of
a Bayesian machine game, but now we assume that the machines are interactive Turing machines,
that can also send and receive messages. We omit the formal definition of an interactive Turing
machine (see, for example, [Goldreich 2001]); roughly speaking, the machines use a special tape
where the message to be sent is placed and another tape where a message to be received is written.
The mediator is modeled by an interactive Turing machine that we denote F . A Bayesian machine
game with a mediator (or a mediated Bayesian machine game) is thus a pair (G,F), where G =
([m],M,Pr,C1, . . . ,Cn, u1, . . . , un) is a Bayesian machine game (except that M here denotes a set
of interactive machines) and F is an interactive Turing machine.

Like machines in Bayesian machine games, interactive machines in a game with a mediator take
as argument a view and produce an outcome. Since what an interactive machine does can depend
on the history of messages sent by the mediator, the message history (or, more precisely, that part

6Note that if we do not disregard the cost of computation, it is not clear how to define the individual complexity
of a player that is controlled by M ′Z .
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of the message history actually read by the machine) is also part of the view. Thus, we now define
a view to be a string t;h; r in {0, 1}∗; {0, 1}∗; {0, 1}∗, where, as before, t is that part of the type
actually read and r is a finite bitstring representing the string of random bits actually used, and
h is a finite sequence of messages received and read. Again, if v = t;h; r, we take M(v) to be the
output of M given the view.

We assume that the system proceeds in synchronous stages; a message sent by one machine to
another in stage k is received by the start of stage k+1. More formally, following [Abraham, Dolev,
Gonen, and Halpern 2006], we assume that a stage consists of three phases. In the first phase of
a stage, each player i sends a message to the mediator, or, more precisely, player i’s machine
Mi computes a message to send to the mediator; machine Mi can also send an empty message,
denoted λ. In the second phase, the mediator receives the message and mediator’s machine sends
each player i a message in response (again, the mediator can send an empty message). In the third
phase, each player i performs an action other than that of sending a message (again, it may do
nothing). The messages sent and the actions taken can depend on the machine’s message history
(as well as its initial type).

We can now define the expected utility of a profile of interactive machines in a Bayesian machine
game with a mediator. The definition is similar in spirit to the definition in Bayesian machine games,
except that we must take into account the dependence of a player’s actions on the message sent
by the mediator. Let viewi( ~M,F ,~t, ~r) denote the string (ti;hi; ri) where hi denotes the messages
received by player i if the machine profile is ~M , the mediator uses machine F , the type profile is
~t, and ~r is the profile of random strings used by the players and the mediator. Given a mediated
Bayesian machine game G′ = (G,F), we can define the random variable uG

′, ~M
i (~t, ~r) as before,

except that now ~r must include a random string for the mediator, and to compute the outcome
and the complexity function, Mj gets as an argument viewj( ~M,F ,~t, ~r), since this is the view that

machine Mj gets in this setting. Finally, we define UG
′

i ( ~M) = EPr+ [uG
′, ~M

i ] as before, except that
now Pr+ is a distribution on T × ({0, 1}∞)n+1 rather than T × ({0, 1}∞)n, since we must include a
random string for the mediator as well as the players’ machines. We can define Nash equilibrium
and computationally robust Nash equilibrium in games with mediators as in Bayesian machine
games; we leave the details to the reader.

Up to now, we have considered only players communicating with a mediator. We certainly
want to allow for the possibility of players communicating with each other. We model this using
a particular mediator that we call the communication mediator, denoted comm, which corresponds
to what cryptographers call secure channels and economists call cheap talk. With this mediator,
if i wants to send a message to j, it simply sends the message and its intended recipient to the
mediator comm. The mediator’s strategy is simply to forward the messages, and the identities of
the senders, to the intended recipients. (Technically, we assume that a message m from i to the
mediator with intended recipient j has the form m; j. Messages not of this form are ignored by the
mediator.)

3 A Game-Theoretic Notion of Protocol Security

In this section we extend the traditional notion of game-theoretic implementation of mediators
to consider computational games. Our aim is to obtain a notion of implementation that can
be used to capture the cryptographic notion of secure computation. For simplicity, we focus on
implementations of mediators that receive a single message from each player and return a single
message to each player (i.e., the mediated games consist only of a single stage).

We provide a definition that captures the intuition that the machine profile ~M implements a
mediator F if, whenever a set of players want to to truthfully provide their “input” to the mediator
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F , they also want to run ~M using the same inputs. To formalize “whenever”, we consider what
we call canonical coalition games, where each player i has a type ti of the form xi; zi, where xi is
player i’s intended “input” and zi consists of some additional information that player i has about
the state of the world. We assume that the input xi has some fixed length n. Such games are called
canonical games of input length n.7

Let ΛF denote the machine that, given type t = x; z sends x to the mediator F and outputs as
its action whatever string it receives back from F , and then halts. (Technically, we model the fact
that ΛF is expecting to communicate with F by assuming that the mediator F appends a signature
to its messages, and any messages not signed by F are ignored by ΛF .) Thus, the machine ΛF

ignores the extra information z. Let ~ΛF denote the machine profile where each player uses the
machine ΛF . Roughly speaking, to capture the fact that whenever the players want to use F ,
they also want to run ~M , we require that if ~ΛF is an equilibrium in the game (G,F) (i.e., if it is
an equilibrium to simply provide the intended input to F and finally output whatever F replies),
running ~M using the intended input is an equilibrium as well.

We actually consider a more general notion of implementation: we are interested in understand-
ing how well equilibrium in a set of games with mediator F can be implemented using a machine
profile ~M and a possibly different mediator F ′. Roughly speaking, we want that, for every game G
in some set G of games, if ~ΛF is an equilibrium in (G,F), then ~M is an equilibrium in (G,F ′). In
particular, we want to understand what degree of robustness p in the game (G,F) is required to
achieve an ε-equilibrium in the game (G,F ′). We also require that the equilibrium with mediator
F ′ be as “coalition-safe” as the equilibrium with mediator F .

Definition 3.1 (Universal implementation) Suppose that G is a set of m-player canonical
games, Z is a set of subsets of [m], F and F ′ are mediators, M1, . . . ,Mm are interactive ma-
chines, p : IN × IN → IN , and ε : IN → IR. ( ~M,F ′) is a (G,Z, p)-universal implementation of F
with error ε if, for all n ∈ IN , all games G ∈ G with input length n, and all Z ′ ⊆ Z, if ~ΛF is a
p(n, ·)-robust Z ′-safe Nash equilibrium in the mediated machine game (G,F) then

1. (Preserving Equilibrium) ~M is a Z ′-safe ε(n)-Nash equilibrium in the mediated machine game
(G,F ′).

2. (Preserving Action Distributions) For each type profile ~t, the action profile induced by ~ΛF in
(G,F) is identically distributed to the action profile induced by ~M in (G,F ′).

As we have observed, although our notion of universal implementation does not explicitly con-
sider the privacy of players’ inputs, it can nevertheless capture privacy requirements. It suffices
to consider a game where a player gains significant utility by knowing some information about a
player’s input.

Note that, depending on the class G, our notion of universal implementation imposes severe
restrictions on the complexity of the machine profile ~M . For instance, if G consists of all games, it
requires that the complexity of ~M is the same as the complexity of ~ΛF . (If the complexity of ~M is
higher than that of ~ΛF , then we can easily construct a gameG by choosing the utilities appropriately
such that it is an equilibrium to run ~ΛF in (G,F), but running ~M is too costly.) Also note that if
G consists of games where players strictly prefer smaller complexity, then universal implementation
requires that ~M be the optimal algorithm (i.e., the algorithm with the lowest complexity) that
implements the functionality of ~M , since otherwise a player would prefer to switch to the optimal
implementation. Since few algorithms algorithms have been shown to be provably optimal with

7Note that by simple padding, canonical games represent a setting where all parties’ input lengths are upper-
bounded by some value n that is common knowledge. Thus, we can represent any game where there are only finitely
many possible types as a canonical game for some input length n.
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respect to, for example, the number of computational steps of a Turing machines, this, at first
sight, seems to severely limit the use of our definition. However, if we consider games with “coarse”
complexity functions where, say, the first T steps are “free” (e.g., machines that execute less than
T steps are assigned complexity 1), or n2 computational steps count as one unit of complexity,
the restrictions above are not so severe. Indeed, it seems quite natural to assume that a player is
indifferent between “small” differences in computation in such a sense.

Our notion of universal implementation is related to a number of earlier notions of implemen-
tation. We now provide a brief comparison with the most relevant ones.

• Our definition of universal implementation captures intuitions similar in spirit to Forges’
[1990] notion of a universal mechanism. It differs in one obvious way: our definition consid-
ers computational games, where the utility functions depend on complexity considerations.
Dodis, Halevi and Rabin [2000] (and more recent work, such as [Abraham, Dolev, Gonen,
and Halpern 2006; Lepinski, Micali, Peikert, and Shelat 2004; Halpern and Teadgue 2004;
Abraham, Dolev, Gonen, and Halpern 2006; Gordon and Katz 2006; Kol and Naor 2008])
consider notions of implementation where the players are modeled as polynomially-bounded
Turing machines, but do not consider computational games. As such, the notions considered
in these works do not provide any a priori guarantees about the incentives of players with
regard to computation.

• Our definition is more general than earlier notions of implementation in that we consider
universality with respect to (sub-)classes G of games, and allow deviations by coalitions.

• Our notion of coalition-safety also differs somewhat from earlier related notions. Note that if
Z contains all subsets of players with k or less players, then universal implementation implies
that all k-resilient Nash equilibria and all strong k-resilient Nash equilibria are preserved.
However, unlike the notion of k-resilience considered by Abraham et al. [2006, 2008], our
notion provides a “best-possible” guarantee for games that do not have a k-resilient Nash
equilibrium. We guarantee that if a certain subset Z of players have no incentive to deviate
in the mediated game, then that subset will not have incentive to deviate in the cheap-
talk game; this is similar in spirit to the definitions of [Izmalkov, Lepinski, and Micali 2008;
Lepinski, Micali, Peikert, and Shelat 2004]. Note that, in contrast to [Izmalkov, Lepinski, and
Micali 2008; Lepinski, Micali, and Shelat 2005], rather than just allowing colluding players to
communicate only through their moves in the game, we allow coalitions of players that are
controlled by a single entity; this is equivalent to considering collusions where the colluding
players are allowed to freely communicate with each other. In other words, whereas the
definitions of [Izmalkov, Lepinski, and Micali 2008; Lepinski, Micali, and Shelat 2005] require
protocols to be “signalling-free”, our definition does not impose such restrictions. We believe
that this model is better suited to capturing the security of cryptographic protocols in most
traditional settings (where signalling is not an issue).

• We require only that a Nash equilibrium is preserved when moving from the game with
mediator F to the communication game. Stronger notions of implementation require that
the equilibrium in the communication game be a sequential equilibrium [Kreps and Wilson
1982]; see, for example, [Gerardi 2004; Ben-Porath 2003]. Since every Nash equilibrium in
the game with the mediator F is also a sequential equilibrium, these stronger notions of
implementation actually show that sequential equilibrium is preserved when passing from the
game with the mediator to the communication game.

While these notions of implementation guarantee that an equilibrium with the mediator is
preserved in the communication game, they do not guarantee that new equilibria are not
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introduced in the latter. An even stronger guarantee is provided by Izmalkov, Lepinski, and
Micali’s [2008] notion of perfect implementation; this notion requires a one-to-one correspon-
dence f between strategies in the corresponding games such that each player’s utility with
strategy profile ~σ in the game with the mediator is the same as his utility with strategy
profile (f(σ1), . . . , f(σn)) in the communication game without the mediator. Such a corre-
spondence, called strategic equivalence by Izmalkov, Lepinski, and Micali [2008], guarantees
(among other things) that all types of equilibria are preserved when passing from one game to
the other, and that no new equilibria are introduced in the communication game. However,
strategic equivalence can be achieved only with the use of strong primitives, which cannot be
implemented under standard computational and systems assumptions [Lepinski, Micali, and
Shelat 2005]. We focus on the simpler notion of implementation, which requires only that
Nash equilibria are preserved, and leave open an exploration of more refined notions.

Strong Universal Implementation Intuitively, ( ~M,F ′) universally implements F if, whenever
a set of parties want to use F (i.e., it is an equilibrium to use ~ΛF when playing with F), then the
parties also want to run ~M (using F ′) (i.e., using ~M with F ′ is also an equilibrium). We now
strengthen this notion to also require that whenever a subset of the players do not want to use
F (specifically, if they prefer to do “nothing”), then they also do not want to run ~M , even if all
other players do so. Recall that ⊥ denotes the (canonical) machine that does nothing. We use ⊥
to denote the special machine that sends no messages and writes nothing on the output tape.

Definition 3.2 (Strong Universal Implementation) Let ( ~M,F ′) be a (G,Z, p)-universal im-
plementation of F with error ε. ( ~M,F ′) is a strong (G,Z, p)-implementation of F if, for all n ∈ IN ,

all games G ∈ G with input length n, and all Z ∈ Z, if ~⊥Z is a p(n, ·)-robust best response to
ΛF−Z in (G,F), then ~⊥Z is an ε-best response to ~M−Z in (G,F ′).

4 Relating Cryptographic and Game-Theoretic Implementation

We briefly recall the notion of precise secure computation [Micali and Pass 2006; Micali and Pass
2007], which is a strengthening of the traditional notion of secure computation [Goldreich, Micali,
and Wigderson 1987]; more details are given in Appendix A.

An m-ary functionality f is specified by a random process that maps vectors of inputs to vectors
of outputs (one input and one output for each player). That is, f : (({0, 1}∗)m × {0, 1}∞) →
({0, 1}∗)m, where we view fi as the ith component of the output vector; that is, f = (f1, . . . , fm).
We often abuse notation and suppress the random bitstring r, writing f(~x) or fi(~x). (We can think
of f(~x) and fi(~x) as random variables.) A mediator F (resp., a machine profile ~M) computes f if,
for all n ∈ N , all inputs ~x ∈ ({0, 1}n)m, if the players tell the mediator their inputs and output
what the mediator F tells them (resp., the output vector of the players after an execution of ~M

where Mi gets input xi) is identically distributed to fn(~x). Roughly speaking, a protocol ~M for
computing a function f is secure if, for every adversary A participating in the real execution of
~M , there exists a “simulator” Ã participating in an ideal execution where all players directly talk

to a trusted third party (i.e., a mediator) computing f ; the job of Ã is to provide appropriate
inputs to the trusted party, and to reconstruct the view of A in the real execution such that no
distinguisher D can distinguish the outputs of the parties and the view of the adversary A in the
real and the ideal execution. (Note that in the real execution the view of the adversary is simply
the actual view of A in the execution, whereas in the ideal execution it is the view output by the
simulator Ã). The traditional notion of secure computation [Goldreich, Micali, and Wigderson
1987] requires only that the worst-case complexity (size and running-time) of Ã is polynomially
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related to that of A. Precise secure computation [Micali and Pass 2006; Micali and Pass 2007]
additionally requires that the running time of the simulator Ã “respects” the running time of the
adversary A in an “execution-by-execution” fashion: a secure computation is said to have precision
p(n, t) if the running-time of the simulator Ã (on input security parameter n) is bounded by p(n, t)
whenever Ã outputs a view in which the running-time of A is t.

We introduce here a weakening of the notion of precise secure computation. The formal defini-
tion is given in Appendix A.1. We here highlight the key differences:
• The standard definition requires the existence of a simulator for every A, such that the real

and the ideal execution cannot be distinguished given any set of inputs and any distinguisher.
In analogy with the work of Dwork, Naor, Reingold, and Stockmeyer [2003], we change the
order of the quantifiers. We simply require that given any adversary, any input distribution
and any distinguisher, there exists a simulator that tricks that particular distinguisher, except
with probability ε(n); ε is called the error of the secure computation.
• The notion of precise simulation requires that the simulator never exceeds its precision

bounds. We here relax this assumption and let the simulator exceed its bound with probability
ε(n).

We also generalize the notion by allowing arbitrary complexity measures ~C (instead of just running-
time) and general adversary structures [Hirt and Maurer 2000] (where the specification of a secure
computation includes a set Z of subsets of players such that the adversary is allowed to corrupt
only the players in one of the subsets in Z; in contrast, in [Goldreich, Micali, and Wigderson
1987; Micali and Pass 2006] only threshold adversaries are considered, where Z consists of all
subsets up to a pre-specified size k). The formal definition of weak ~C -precise secure computation
is given in Appendix A.1. Note that the we can always regain the “non-precise” notion of secure
computation by instantiating CZ(M, v) with the sum of the worst-case running-time of M (on
inputs of the same length as the input length in v) and size of M . Thus, by the results of [Ben-Or,
Goldwasser, and Wigderson 1988; Goldwasser, Micali, and Rackoff 1989; Goldreich, Micali, and
Wigderson 1987], it follows that there exists weak ~C -precise secure computation protocols with
precision p(n, t) = poly(n, t) when CZ(M,v) is the sum of the worst-case running-time of M and
size of M . The results of [Micali and Pass 2006; Micali and Pass 2007] extend to show the existence
of weak C -precise secure computation protocols with precision p(n, t) = O(t) when CZ(M, v) is
the sum of the running time (as opposed to just worst-case running-time) of M(v) and size of M .
The results above continue to hold if we consider “coarse” measures of running-time and size; for
instance, if, say, n2 computational steps correspond to one unit of complexity (in canonical machine
games with input length n). See Appendix 4.2 for more details.

4.1 Equivalences: The Information-theoretic Case

As a warm-up, we show that “error-free” secure computation, also known as perfectly-secure com-
putation [Ben-Or, Goldwasser, and Wigderson 1988], already implies the traditional game-theoretic
notion of implementation [Forges 1990] (which does not consider computation). To do this, we first
formalize the traditional game-theoretic notion using our notation: Let ~M be an m-player profile
of machines. We say that ( ~M,F ′) is a traditional game-theoretic implementation of F if ( ~M,F ′)
is a (Gnocomp, {{1}, . . . {m}}, 0)-universal implementation of F with 0-error, where Gnocomp denotes
the class of all m-player canonical machine games where the utility functions do not depend on the
complexity profile. (Recall that the traditional notion does not consider computational games or
coalition games.)

Proposition 4.1 If f is an m-ary functionality, F is a mediator that computes f , and ~M is a
perfectly-secure computation of F , then ( ~M, comm) is a game-theoretic implementation of F .
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Proof: We start by showing that running ~M is a Nash equilibrium if running ~ΛF with mediator F
is one. Recall that the cryptographic notion of error-free secure computation requires that for every
player i and every “adversarial” machine M ′i controlling player i, there exists a “simulator” machine
M̃i, such that the outputs of all players in the execution of (M ′i , ~M−i) are identically distributed to
the outputs of the players in the execution of (M̃i, ~ΛF−i) with mediator F .8 In game-theoretic terms,
this means that every “deviating” strategy M ′i in the communication game can be mapped into a
deviating strategy M̃i in the mediated game with the same output distribution for each type, and,
hence, the same utility, since the utility depends only on the type and the output distribution; this
follows since we require universality only with respect to games in Gnocomp. Since no deviations in
the mediated game can give higher utility than the Nash equilibrium strategy of using ΛFi , running
~M must also be a Nash equilibrium.

It only remains to show that ~M and ~ΛF induce the same action distribution; this follows directly
from the definition of secure computation by considering an adversary that does not corrupt any
parties.

We note that the converse implication does not hold. Since the traditional game-theoretic notion of
implementation does not consider computational cost, it does not take into account computational
advantages possibly gained by using ~M , issues that are critical in the cryptographic notion of
zero-knowledge simulation.

We now show that weak precise secure computation is equivalent to strong G-universal imple-
mentation for certain natural classes G of games. For this result, we assume that the only machines
that can have a complexity of 0 are those that “do nothing”: we require that, for all complexity
functions C , C (M, v) = 0 for some view v iff M = ⊥ iff C (M,v) = 0 for all views v. (Recall that ⊥
is a canonical representation of the TM that does nothing: it does not read its input, has no state
changes, and writes nothing.) If G = ([m],M,Pr, ~C , ~u) is a canonical game with input length n,
then

1. G is machine universal if the machine set M is the set of terminating Turing machines;

2. G is normalized if the range of uZ is [0, 1] for all subsets Z of [m];

3. G is monotone (i.e., “players never prefer to compute more”) if, for all subset Z of [m], all
type profiles ~t, action profiles ~a, and all complexity profiles (cZ ,~c−Z), (c′Z ,~c−Z), if c′Z > cZ ,
then uZ(~t,~a, (c′Z ,~c−Z)) ≤ ui(~t,~a, (cZ ,~c−Z));

4. G is a ~C ′-game if CZ = C ′Z for all subsets Z of [m].

Let G ~C denote the class of machine-universal, normalized, monotone, canonical ~C -games. For our
theorem we need some minimal constraints on the complexity function. For the forward direction of
our equivalence results (showing that precise secure computation implies universal implementation),
we require that honestly running the protocol should have constant complexity, and that it be the
same with and without a mediator. More precisely, we assume that the complexity profile ~C is
~M -acceptable, that is, for every subset Z, the machines (ΛF )bZ and M b

Z have the same complexity
c0 for all inputs; that is, CZ((ΛF )bZ , ·) = c0 and CZ(M b

Z , ·) = c0.9 Note that an assumption of this
nature is necessary in order to show that ( ~M, comm) is a (G ~C ,Z, p)-universal implementation of
F . If the complexity of ~M is higher than that of ~ΛF , then we can construct a game G such that
it is an equilibrium to run ~ΛF in (G,F), but running ~M is too costly. The assumption that ~M

8The follows from the fact that perfectly-secure computation is error-free.
9Our results continue to hold if c0 is a function of the input length n, but otherwise does not depend on the view.
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and ~ΛF have the same complexity is easily satisfied when considering coarse complexity function
(where say the first T steps of computation are free). Another way of satisfying this assumption
is to consider a complexity function that simply charges c0 for the use of the mediator, where c0

is the complexity of running the protocol. Given this view, universal implementation requires only
that players want to run ~M as long as they are willing to pay c0 in complexity for talking to the
mediator. For the backward direction of our equivalence (showing that universal implementation
implies precise secure computation), we require that certain operations, like moving output from
one tape to another, do not incur any additional complexity. Such complexity functions are called
output-invariant ; we provide a formal definition at the beginning of Appendix B.

We can now state the connection between secure computation and game-theoretic implemen-
tation. In the forward direction, we restrict attention to protocols ~M computing some m-ary
functionality f that satisfy the following natural property: if a subset of the players “aborts” (not
sending any messages, and outputting nothing), their input is intepreted as λ.10 More precisely,
~M is an abort-preserving computation of f if for all n ∈ N , every subset Z of [m], all inputs
~x ∈ ({0, 1}n)m, the output vector of the players after an execution of (~⊥Z , ~M−Z) on input ~x is
identically distributed to f(λZ , ~x−Z).

Theorem 4.2 (Equivalence: Information-theoretic case) Suppose that f is an m-ary func-
tionality, F is a mediator that computes f , ~M is a machine profile that computes f , Z is a set of
subsets of [m], ~C is a complexity function, and p a precision function.

• If ~C is ~M -acceptable and ~M is an abort-preserving weak Z-secure computation of f with
~C -precision p and ε-statistical error, then ( ~M, comm) is a strong (G ~C ,Z, p)-universal imple-

mentation of F with error ε.
• If ~C is ~M -acceptable and output-invariant, and ( ~M, comm) is a strong (G ~C ,Z, p)-universal

implementation of F with error ε′, then for every ε < ε′, ~M is a weak Z-secure computation
of f with ~C -precision p and ε-statistical error.

As a corollary of Theorem 4.2, we get that known (precise) secure computation protocols directly
yield appropriate universal implementations, provided that we consider complexity functions that
are ~M -acceptable. For instance, by the results of [Ben-Or, Goldwasser, and Wigderson 1988; Micali
and Pass 2007], every efficient m-ary functionality f has a weak Z-secure computation protocol ~M
with C -precision p(n, t) = t if CZ(M, v) is the sum of the running time of M(v) and size of M , and Z
consists of all subsets of [m] of size smaller than |m|/3. This result still holds if we consider “coarse”
measures of running-time and size where, say, O(nc) computational steps (and size) correspond to
one unit of complexity (in canonical machine games with input length n). Furthermore, protocol
~M is abort-preserving, has a constant description, and has running time smaller than some fixed

polynomial O(nc) (on inputs of length n). So, if we consider an appropriately coarse notion of
running time and description size, CZ is ~M -acceptable. By Theorem 4.2, it then immediately follows
that every efficient m-ary functionality f has a strong (G ~C ,Z, O(1))-universal implementation with
error 0.

Theorem 4.2 also shows that a universal implementation of a mediator F computing a function
f with respect to general classes of games is “essentially” as hard to achieve as a secure computa-
tions of f . In particular, as long as the complexity function is output-invariant, such a universal
implementation is a weak precise secure computation. Although the output-invariant condition
might seem somewhat artificial, Theorem 4.2 illustrates that overcoming the “secure-computation

10All natural secure computation protocols that we are aware of (e.g., [Goldreich, Micali, and Wigderson 1987;
Ben-Or, Goldwasser, and Wigderson 1988]) satisfy this property.
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barrier” with respect to general classes of games requires making strong (and arguably unnatural11)
assumptions about the complexity function. We have not pursued this path. In Section 6, we in-
stead consider universal implementation with respect to restricted class of games. As we shall see,
this provides an avenue for circumventing traditional impossibility results with respect to secure
computation.

In Section 4.2 we also provide a “computational” analogue of the equivalence theorem above,
as well as a characterization of the “standard” (i.e., “non-precise”) notion of secure computation.

Proof overview We now provide a high-level overview of the proof of Theorem 4.2. Needless to
say, this oversimplified sketch leaves out many crucial details that complicate the proof.

Weak precise secure computation implies strong universal implementation. At first glance, it might
seem like the traditional notion of secure computation of [Goldreich, Micali, and Wigderson 1987]
easily implies the notion of universal implementation: if there exists some (deviating) strategy A
in the communication game implementing mediator F that results in a different distribution over
actions than in equilibrium, then the simulator Ã for A could be used to obtain the same distri-
bution; moreover, the running time of the simulator is within a polynomial of that of A. Thus,
it would seem like secure computation implies that any “poly”-robust equilibrium can be imple-
mented. However, the utility function in the game considers the complexity of each execution of the
computation. So, even if the worst-case running time of Ã is polynomially related to that of A, the
utility of corresponding executions might be quite different. This difference may have a significant
effect on the equilibrium. To make the argument go through we need a simulation that preserves
complexity in an execution-by-execution manner. This is exactly what precise zero knowledge
[Micali and Pass 2006] does. Thus, intuitively, the degradation in computational robustness by a
universal implementation corresponds to the precision of a secure computation.

More precisely, to show that a machine profile ~M is a universal implementation, we need to show
that whenever Λ is a p-robust equilibrium in a game G with mediator F , then ~M is an ε-equilibrium
(with the communication mediator comm). Our proof proceeds by contradiction: we show that a
deviating strategy M ′Z (for a coalition Z) for the ε-equilibrium ~M can be turned into a deviating
strategy M̃Z for the p-robust equilibrium ~Λ. We here use the fact that ~M is a weak precise secure
computation to find the machine M̃Z ; intuitively M̃Z will be the simulator for M ′Z . The key step
in the proof is a method for embedding any coalition machine game G into a distinguisher D that
“emulates” the role of the utility function in G. If done appropriately, this ensures that the utility
of the (simulator) strategy M̃Z is close to the utility of the strategy M ′Z , which contradicts the
assumption that ~Λ is an ε-Nash equilibrium.

The main obstacle in embedding the utility function of G into a distinguisher D is that the
utility of a machine M̃Z in G depends not only on the types and actions of the players, but also
on the complexity of running M̃Z . In contrast, the distinguisher D does not get the complexity
of M̃ as input (although it gets its output v). On a high level (and oversimplifying), to get
around this problem, we let D compute the utility assuming (incorrectly) that M̃Z has complexity
c = C (M ′, v) (i.e., the complexity of M ′Z in the view v output by M̃Z). Suppose, for simplicity,
that M̃Z is always “precise” (i.e., it always respects the complexity bounds).12 Then it follows
that (since the complexity c is always close to the actual complexity of M̃Z in every execution) the
utility computed by D corresponds to the utility of some game G̃ that is at most a p-speed up of G.
(To ensure that G̃ is indeed a speedup and not a “slow-down”, we need to take special care with

11With a coarse complexity measure, it seems natural to assume that moving content from one output tape to
another incurrs no change in complexity.

12This is an unjustified assumption; in the actual proof we actually need to consider a more complicated construc-
tion.
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simulators that potentially run faster than the adversary they are simulating. The monotonicity
of G helps us to circumvent this problem.) Thus, although we are not able to embed G into the
distinguisher D, we can embed a related game G̃ into D. This suffices to show that ~Λ is not a
Nash equilibrium in G̃, contradicting the assumption that ~Λ is a p-robust Nash equilibrium. A
similar argument can be used to show that ⊥ is also an ε-best response to ~M−Z if ⊥ is a p-robust
best response to ~Λ−Z , demonstrating that ~M in fact is a strong universal implementation. We here
rely on the fact ~M is abort-preserving to ensure that aborting in (G,F) has the same effect as in
(G, comm).

Strong universal implementation implies weak precise secure computation. To show that strong
universal implementation implies weak precise secure computation, we again proceed by contra-
diction. We show how the existence of a distinguisher D and an adversary M ′Z that cannot be
simulated by any machine M̃Z can be used to construct a game G for which ~M is not a strong
implementation. The idea is to have a utility function that assigns high utility to some “simple”
strategy M∗Z . In the mediated game with F , no strategy can get better utility than M∗Z . On the
other hand, in the cheap-talk game, the strategy M ′Z does get higher utility than M∗Z . As D indeed
is a function that “distinguishes” a mediated execution from a cheap-talk game, our approach will
be to try to embed the distinguisher D into the game G. The choice of G depends on whether
M ′Z = ⊥. We now briefly describe these games.

If M ′Z = ⊥, then there is no simulator for the machine ⊥ that simply halts. In this case,
we construct a game G where using ⊥ results in a utility that is determined by running the
distinguisher. (Note that ⊥ can be easily identified, since it is the only strategy that has complexity
0.) All other strategies instead get some canonical utility d, which is higher than the utility of ⊥
in the mediated game. However, since ⊥ cannot be “simulated”, playing ⊥ in the cheap-talk game
leads to an even higher utility, contradicting the assumption that ~M is a universal implementation.

If M ′Z 6= ⊥, we construct a game G′ in which each strategy other than ⊥ gets a utility that is
determined by running the distinguisher. Intuitively, efficient strategies (i.e., strategies that have
relatively low complexity compared to M ′Z) that output views on which the distinguisher outputs
1 with high probability get high utility. On the other hand, ⊥ gets a utility d that is at least as
good as what the other strategies can get in the mediated game with F . This makes ⊥ a best
response in the mediated game; in fact, we can define the game G′ so that it is actually a p-robust
best response. However, it is not even an ε-best-response in the cheap-talk game: M ′Z gets higher
utility, as it receives a view that cannot be simulated. (The output-invariant condition on the
complexity function C is used to argue that M ′Z can output its view at no cost.)

4.2 Equivalences: The Computational Case

To prove a “computational” analogue of our equivalence theorem (relating computational precise
secure computation and universal implementation), we need to introduce some further restrictions
on the complexity functions, and the classes of games considered.

• A (vector of) complexity functions ~C is efficient if each function is computable by a (ran-
domized) polynomial-sized circuit.

• A secure computation game G = ([m],MT (n),Pr, ~C , ~u) with input length n is said to be
T (·)-machine universal if

– the machine set MT (n) is the set of Turing machines implementable by T (n)-sized ran-
domized circuits, and

– ~u is computable by a T (n)-sized circuit.
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Let G ~C ,T denote the class of T (·)-machine universal, normalized, monotone, canonical ~C -
games. Let G ~C ,poly denote the union of G ~C ,T for all polynomial functions T .

Theorem 4.3 (Equivalence: Computational Case) Suppose that f is an m-ary functionality,
F is a mediator that computes f , ~M is a machine profile that computes f , Z is a set of subsets of
[m], ~C is an efficient complexity function, and p a precision function.

• If ~C is ~M -acceptable and ~M is an abort-preserving weak Z-secure computation of f with
computational ~C -precision p, then for every polynomial T , there exists some negligible function
ε such that ( ~M, comm) is a strong (G ~C ,T ,Z, p)-universal implementation of F with error ε.
• If ~C is ~M -acceptable and output-invariant, and for every polynomial T , there exists some

negligible function ε, such that ( ~M, comm) is a strong (G ~C ,Z, p)-universal implementation of
F with error ε, then ~M is a weak Z-secure computation of f with computational ~C -precision
p.

Theorem 4.3 is proved in Appendix C

Relating Universal Implementation and “Standard” Secure Computation Note that
Theorem 4.3 also provides a game-theoretic characterization of the “standard” (i.e., “non-precise”)
notion of secure computation. We simply consider a “coarse” version of the complexity function
wc(v) that is the sum of the size of M and the worst-case running-time of M on inputs of the same
length as in the view v. (We need a coarse complexity function to ensure that C is ~M -acceptable and
output-invariant.) With this complexity function, the definition of weak precise secure computation
reduces to the traditional notion of weak secure computation without precision (or, more precisely,
with “worst-case” precision just as in the traditional definition). Given this complexity function,
the precision of a secure computation protocol becomes the traditional “overhead” of the simulator
(this is also called knowledge tightness [Goldreich, Micali, and Wigderson 1991]). Roughly speaking,
“weak secure computation” with overhead p is thus equivalent to strong (G ~wc,poly, p)-universal
implementation with negligible error.

5 Universal Implementation for Specific Classes of Games

Our equivalence result for secure computation might seem like a negative result. It demonstrates
that considering only rational players (as opposed to adversarial players) does not facilitate protocol
design. Note, however, that for the equivalence to hold, we must consider implementations universal
with respect to essentially all games. In many settings, it might be reasonable to consider imple-
mentations universal with respect to only certain subclasses of games; in such scenarios, universal
implementations may be significantly simpler or more efficient, and may also circumvent traditional
lower bounds. We list some natural restrictions on classes of games below, and discuss how such
restrictions can be leveraged in protocol design. These examples illustrate some of the benefits of a
fully game-theoretic notion of security that does not rely on the standard cryptographic simulation
paradigm, and shows how our framework can capture in a natural way a number of natural notions
of security.

To relate our notions to the standard definition of secure computation, we here focus on classes
of games G that are subsets of G ~wc,poly (as defined in Section 4.2). Furthermore, we consider
only 2-player games and restrict attention to games G where the utility function is separable in
the following sense: there is a standard game G′ (where computational costs are not taken into
account) and a function uCi on complexity profiles for each player i, such that, for each player i,
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ui(~t,~a,~c) = uG
′

i (~t,~a) +uCi (~c). We refer to G′ as the standard game embedded in G. Intuitively, this
says that the utilities in G are just the sum of the utility in a game G′ where computation is not
taken into account and a term that depends only on computation costs.

Games with punishment: Many natural situations can be described as games where play-
ers can choose actions that “punish” an individual player i. For instance, this punishment
can represent the cost of being excluded from future interactions. Intuitively, games with
punishment model situations where players do not want to be caught cheating. Punishment
strategies (such as the grim-trigger strategy in repeated prisoner’s dilemma, where a player
defects forever once his opponent defects once [Axelrod 1984]) are extensively used in the
game-theory literature. We give two examples where cryptographic protocol design is facil-
itated when requiring only implementations that are universal with respect to games with
punishment.

Covert adversaries: As observed by Malkhi et al. [2004], and more recently formalized by Au-
mann and Lindell [2006] [AL from now on], in situations were players do not want to be caught
cheating, it is easier to construct efficient protocols. Using our framework, we can formalize
this intuition in a straightforward way. To explain the intuitions, we consider a particularly
simple setting. Let Gpunish consist of normalized 2-player games G (with a standard game
G′ embedded in G), where (1) honestly reporting your input and outputting whatever the
mediator replies (i.e., playing the strategy implemented by ~Λ) is a Nash equilibrium in (G′,F)
where both players are guaranteed to get utility 1/2 (not just in expectation, but even in the
worst-case), and (2) there is a special string punish such that player 1− i receives payoff 0 in
G if player i outputs the string punish. In this setting, we claim that any secure computation
of a function f with respect to covert adversaries with deterrent 1/2 in the sense of [Aumann
and Lindell 2006, Definition 3.3] is a (Gpunish, poly,Z)- universal implementation of F with
negligible error (where Z = {{1},{2}}, and F is a mediator computing f). Roughly speak-
ing, the AL definition follows the traditional definition of secure computation, but changes
how the ideal-model trusted party operates. More precisely, the ideal-model adversary, Ã, is
given two new special messages it can send to the trusted party: cheat and corrupted. If it
sends corrupted, the trusted party simply outputs punish to both players—this amounts to
the adversary admitting that it is a “cheater”; if it sends cheat, then with probability 1/2
the adversary gets to see the input of the honest player and to select the honest players’ out-
put (this models successful undetected cheating), and with probability 1/2 the trusted party
outputs punish to both players (this models the event that cheating was detected). We rely
on the proofs of Theorem B.2 and C.1 to show that this notion of security suffices to get a
universal implementation. For any strategy M ′ in the cheap-talk game, we want to construct
a strategy M̃ in the mediated game (G̃,F) (where F computes f , and G̃ is a poly-speedup
of G) with roughly the same utility (formally, with utility negligibly close); if we can do this,
the rest of the proof follows as in Proposition B.2.

We first show how to do this for a different mediated game (Ĝ, F̂), where Ĝ is a poly-speedup
of G and F̂ is a variant of F that considers the extra special operations considered in the AL
trusted-party definition. In this game, we can simply use the simulator M̂ for M ′, letting Ĝ
be a speedup of G that takes care of the overhead in complexity of M̂ with respect to M ′; this
can be done just as in the proof of Theorem B.2, but is much simpler as we here only consider
worst-case complexity. (Recall that a game Ĝ is a speedup of G if Ĝ and G are identical
except for the complexity profiles and the machine set, and where the complexity profile in
Ĝ is a speedup of that in G.) Next, we convert M̂ into a machine M̃ that never outputs any
of the special messages corrupt and cheat. M̃ simply runs M̂ ; if at any point M̂ attempts
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to output a special message, M̃ instead (honestly) outputs the input of the corrupted player
(and finally outputs whatever the mediator replies). We first claim that M̃ gets at least as
high utility as M̂ in the standard game G′. This follows since honestly outputting the true
input gives a utility of 1/2 (by definition); on the other hand, outputting corrupt gives a
payoff of 0, and outputting cheat gives a payoff of at most 1/2× 1 + 1/2× 0. Furthemore, the
overhead in complexity of M̃ with respect to M̂ is at most polynomial; thus we can construct
a game G̃ that is at most a poly-speedup of Ĝ (and thus also of G) such that the utility of
M̃ in (G̃,F) is at least that of M̂ in (Ĝ, F̂ ). This concludes the proof.

Fairness: It is well-known that, for many functions, secure 2-player computation where both
players receive output is impossible if we require fairness (i.e., that either both or neither of
the players receives an output) [Goldreich 2004]. Such impossibility results can be easily cir-
cumvented by considering universal implementation with respect to games with punishment.
This follows from the fact that although it is impossible to get secure computation with fair-
ness, the weaker notion of secure computation with abort [Goldwasser and Lindell 2002] is
achievable. Intuitively, this notion guarantees that the only attack possible is one where one
of the players prevents the other player from getting its output; this is called an abort. This
is formalized by adapting the trusted-party in the ideal model to allow the adversary to send
a special abort message to the trusted party after seeing its own output, which blocks it from
delivering an output to the honest party. To get a universal implementation with respect to
games with punishment, it is sufficient to use any secure computation protocol with abort (see
[Goldwasser and Lindell 2002; Micali and Pass 2007]) modified so that players output punish
if the other player aborts. It immediately follows that a player can never get a higher utility
by aborting (as this will be detected by the other player, and consequently the aborting player
will be punished). Again, this is formalized by showing that for any ideal-model adversary
that sends an abort message to the trusted party, there exists some other adversary (with
essentially the same complexity) that simply does not send the abort message; this can only
improve its utility (since aborting guarantees a utility of 0). This result can be viewed as a
generalization of the approach of [Dodis, Halevi, and Rabin 2000].13

Strictly monotone games: In our equivalence results we considered monotone games, where
players never prefer to compute more. It is sometimes reasonable to assume that players
strictly prefer to compute less. We outline a few possible advantages of considering universal
implementations with respect to strictly monotone games.

Gradual-release protocols: One vein of research on secure computation considers protocols for
achieving fair exchanges using gradual-release protocols (see e.g., [Boneh and Naor 2000]). In
a gradual-release protocol, the players are guaranteed that if at any point one player aborts,
then the other player(s) can compute the output within a comparable amount of time (e.g.,
we can require that if a player aborts and can compute the answer in t time units, then all the
other players should be able to compute it within 2t time units). We believe that by making
appropriate assumptions about the utility of computation, we can ensure that players never
have incentives to deviate. Consider, for instance, a two-player computation of a function f
where in the last phase the players invoke a gradual exchange protocol such that if any player

13For this application, it is not necessary to use our game-theoretic definition of security. An alternative way to
capture fairness in this setting would be to require security with respect to the standard (simulation-based) definition
with abort, and additionally fairness (but not security) with respect to rational agents, according to the definition
of [Dodis, Halevi, and Rabin 2000; Halpern and Teadgue 2004]; this approach is similar to the one used by Kol
and Naor [2008]. Our formalization is arguably more natural, and also considers rational agents that “care” about
computation.
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aborts during the gradual exchange protocol, the other players attempts to recover the secret
using a brute-force search. Intuitively, if for each player the cost of computing t extra steps
is positive, even if the other player computes, say, 2t extra steps, it will never be worth it for
a player to abort: by the security of the gradual-release protocol, an aborting player can only
get its output twice as fast as the other player. Note that merely making assumptions about
the cost of computing does not suffice to make this approach work; we also need to ensure
that players prefer getting the output to not getting it, even if they can trick other players
into computing for a long time. Otherwise, a player might prefer to abort and not compute
anything, while the other player attempts to compute the output. We leave a full exploration
of this approach for future work.

Error-free implementations: Unlike perfectly-secure protocols, computationally-secure pro-
tocols protocols inherently have a nonzero error probability. For instance, secure 2-player
computation can be achieved only with computational security (with nonzero error prob-
ability). By our equivalence result, it follows that strong universal implementations with
respect to the most general classes of 2-player games also require nonzero error probability.
Considering universality with respect to only strictly monotone games gives an approach for
achieving error-free implementations. This seems particularly promising if we consider an
idealized model where cryptographic functionalities (such as one-way functions) are modeled
as black boxes (see, e.g., the random oracle model of Bellare and Rogaway [1993]), and the
complexity function considers the number of calls to the cryptographic function. Intuitively,
if the computational cost of trying to break the cryptographic function is higher than the
expected gain, it is not worth deviating from the protocol. We leave open an exploration of
this topic. (A recent paper by Micali and Shelat [2009] relies on this idea, in combination
with physical devices, to acheive error-free implementations in the context of secret sharing.)

Using computation as payment. Shoham and Tennenholtz [Shoham and Tennenholtz 2005]
have investigated what functions f of two players’ inputs x1, x2 can be computed by the
players if they have access to a trusted party. The players are assumed to want to get the
output y = f(x1, x2), but each player i does not want to reveal more about his input xi than
what can be deduced from y. Furthermore, each player i prefers that other players do not get
the output (although this is not as important as i getting the output and not revealing its
input xi). Interestingly, as Shoham and Tennenholtz point out, the simple binary function
AND cannot be truthfully computed by two players, even if they have access to a trusted
party. A player that has input 0 always knows the output y and thus does not gain anything
from providing its true input to the trusted party: in fact, it always prefers to provide the
input 1 in order to trick the other player.

We believe that for strictly monotone games this problem can be overcome by the use of
cryptographic protocols. The idea is to construct a cryptographic protocol for computing
AND where the players are required to solve a computational puzzle if they want to use 1
as input; if they use input 0 they are not required to solve the puzzle. The puzzle should
have the property that it requires a reasonable amount of computational effort to solve. If
this computational effort is more costly than the potential gain of tricking the other player
to get the wrong output, then it is not worth it for a player to provide input 1 unless its
input actually is 1. To make this work, we need to make sure the puzzle is “easy” enough to
solve, so that a player with input 1 will actually want to solving the puzzle in order to get
the correct output. We leave a full exploration of this idea for future work.

More generally, we believe that combining computational assumptions with assumptions about
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utility will be a fruitful line of research for secure computation. For instance, it is conceivable
that difficulties associated with concurrent executability of protocols could be alleviated by making
assumptions regarding the cost of message scheduling; the direction of Cohen, Kilian, and Petrank
[2001] (where players who delay messages are themselves punished with delays) seems relevant in
this regard.

6 Directions for Future Research

We have provided a game-theoretic definitin of protocol security, and shown a close connection
between computationally robust Nash equilibria and precise secure computation. This opens the
door to a number of exciting research directions in both secure computation and game theory. We
describe a few here:

• Our notion of universal implementation uses Nash equilibrium as solution concept. It is
well known that in (traditional) extensive form games (i.e., games defined by a game tree),
a Nash equilibrium might prescribe non-optimal moves at game histories that do no occur
on the equilibrium path. This can lead to “empty threats”: “punishment” strategies that
are non-optimal and thus not credible. Many recent works on implementation (see e.g.,
[Gerardi 2004; Izmalkov, Lepinski, and Micali 2008]) therefore focus on stronger solution
concepts such as sequential equilibrium [Kreps and Wilson 1982]. We note that when taking
computation into account, the distinction between credible and non-credible threats becomes
more subtle: the threat of using a non-optimal strategy in a given history might be credible
if, for instance, the overall complexity of the strategy is smaller than any strategy that is
optimal at every history. Thus, a simple strategy that is non-optimal off the equilibrium
path might be preferred to a more complicated (and thus more costly) strategy that performs
better off the equilibrium path (indeed, people often use non-optimal but simple “rules-of-
thumbs” when making decisions); see [Halpern and Pass 2008] for more details. Finding a
good definition of empty threats in games with computation costs seems challenging.

• As we have seen, universal implementation is equivalent to a variant of precise secure com-
putation with the order of quantification reversed. It would be interesting to find a notion of
implementation that corresponds more closely to the standard definition, without a change
in the order of quantifier; in particular, whereas the traditional definition of zero-knowledge
guarantees deniability (i.e., the property that the interaction does not leave any “trace”), the
new one does not. Finding a game-theoretic definition that also captures deniability seems
like an interesting question.

• A natural next step would be to introduce notions of computation in the epistemic logic.
There has already been some work in this direction (see, for example, [Halpern, Moses, and
Tuttle 1988; Halpern, Moses, and Vardi 1994; Moses 1988]). We believe that combining the
ideas of this paper with those of the earlier papers will allow us to get, for example, a cleaner
knowledge-theoretic account of zero knowledge than that given by Halpern, Moses, and Tuttle
[1988]. A first step in this direction is taken in [Halpern, Pass, and Raman 2009].
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Appendix

A Precise Secure Computation

In this section, we review the notion of precise secure computation [Micali and Pass 2006; Micali
and Pass 2007], which is a strengthening of the traditional notion of secure computation [Goldreich,
Micali, and Wigderson 1987]. We consider a system where players are connected through secure
(i.e., authenticated and private) point-to-point channels. We consider a malicious adversary that is
allowed to corrupt a subset of the m players before the interaction begins; these players may then
deviate arbitrarily from the protocol. Thus, the adversary is static; it cannot corrupt players based
on history.

An m-ary functionality is specified by a random process that maps vectors of inputs to vectors of
outputs (one input and one output for each player). That is, formally, f : (({0, 1}∗)m×{0, 1}∞)→
({0, 1}∗)m and f = (f1, . . . , fm). We often abuse notation and suppress the random bitstring r,
writing f(~x) or fi(~x). (We can think of f(~x) and fi(~x) as random variables.) A machine profile
~M computes f if for all n ∈ N , all inputs ~x ∈ ({0, 1}n)m the output vector of the players after an

execution of ~M on input ~x (where Mi gets input xi) is identically distributed to fn(~x).14 As usual,
the security of protocol ~M for computing a function f is defined by comparing the real execution of
~M with an ideal execution where all players directly talk to a trusted third party (i.e., a mediator)

computing f . In particular, we require that the outputs of the players in both of these executions
cannot be distinguished, and additionally that the view of the adversary in the real execution can
be reconstructed by the ideal-execution adversary (called the simulator). Additionally, precision
requires that the running-time of the simulator in each run of the ideal execution is closely related
to the running time of the real-execution adversary in the (real-execution) view output by the
simulator.

The ideal execution Let f be an m-ary functionality. Let Ã be a probabilistic polynomial-
time machine (representing the ideal-model adversary) and suppose that Ã controls the players in
Z ⊆ [m]. We characterize the ideal execution of f given adversary Ã using a function denoted
idealf,Ã that maps an input vector ~x, an auxiliary input z, and a tuple (rÃ, rf ) ∈ ({0, 1}∞)2 (a
random string for the adversary Ã and a random string for the trusted third party) to a triple
(~x, ~y, v), where ~y is the output vector of the players 1, . . . ,m, and v is the output of the adversary
Ã on its tape given input (z, ~x, rÃ), computed according to the following three-stage process.

In the first stage, each player i receives its input xi. Each player i /∈ Z next sends xi to the
trusted party. (Recall that in the ideal execution, there is a trusted third party.) The adversary
Ã determines the value x′i ∈ {0, 1}∗ a player i ∈ Z sends to the trusted party. We assume that
the system is synchronous, so the trusted party can tell if some player does not send a message; if
player i does not send a message i is taken to have sent λ. Let ~x′ be the vector of values received
by the trusted party. In the second stage, the trusted party computes yi = fi(~x′, rf ) and sends yi
to Pi for every i ∈ [m]. Finally, in the third stage, each player i /∈ Z outputs the value yi received
from the trusted party. The adversary Ã determines the output of the players i ∈ Z. Ã finally also
outputs an arbitrary value v (which is supposed to be the “reconstructed” view of the real-execution
adversary A). Let viewf,Ã(~x, z, ~r) denote the the view of Ã in this execution. We occasionally abuse
notation and suppress the random strings, writing idealf,Ã(~x, z) and viewf,Ã(~x, z); we can think
of idealf,Ã(~x, z) and viewf,Ã(~x, z) as random variables.

14A common relaxation requires only that the output vectors are statistically close. All our results can be modified
to apply also to protocols that are satisfy only such a “statistical” notion of computation.
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The real execution Let f be an m-ary functionality, let Π be a protocol for computing f , and
let A be a machine that controls the same set Z of players as Ã. We characterize the real execution
of Π given adversary A using a function denoted realΠ,A that maps an input vector ~x, an auxiliary
input z, and a tuple ~r ∈ ({0, 1}∞)m+1−|Z| (m− |Z| random strings for the players not in Z and a
random string for the adversary A), to a triple (~x, ~y, v), where ~y is the output of players 1, . . . ,m,
and v is the view of A that results from executing protocol Π on inputs ~x, when players i ∈ Z are
controlled by the adversary A, who is given auxiliary input z. As before, we often suppress the
vector of random bitstrings ~r and write realΠ,A(~x, z).

We now formalize the notion of precise secure computation. For convenience, we slightly gen-
eralize the definition of [Micali and Pass 2006] to consider general adversary structures [Hirt and
Maurer 2000]. More precisely, we assume that the specification of a secure computation protocol
includes a set Z of subsets of players, where the adversary is allowed to corrupt only the players in
one of the subsets in Z; the definition of [Micali and Pass 2006; Goldreich, Micali, and Wigderson
1987] considers only threshold adversaries where Z consists of all subsets up to a pre-specified size
k. We first provide a definition of precise computation in terms of running time, as in [Micali and
Pass 2006], although other complexity functions could be used; we later consider general complexity
functions.

Let steps be the complexity function that, on input a machine M and a view v, roughly
speaking, gives the number of “computational steps” taken by M in the view v. In counting
computational steps, we assume a representation of machines such that a machine M , given as
input an encoding of another machine A and an input x, can emulate the computation of A on
input x with only linear overhead. (Note that this is clearly the case for “natural” memory-based
models of computation. An equivalent representation is a universal Turing machine that receives
the code it is supposed to run on one input tape.)

In the following definition, we say that a function is negligible if it is asymptotically smaller
than the inverse of any fixed polynomial. More precisely, a function ν : IN → IR is negligible if, for
all c > 0, there exists some nc such that ν(n) < n−c for all n > nc.

Roughly speaking, a computation is secure if the ideal execution cannot be distinguished from
the real execution. To make this precise, a distinguisher is used. Formally, a distinguisher gets as
input a bitstring z, a triple (~x, ~y, v) (intuitively, the output of either idealf,Ã or realΠ,A on (~x, z)
and some appropriate-length tuple of random strings) and a random string r, and outputs either 0 or
1. As usual, we typically suppress the random bitstring and write, for example, D(z, idealf,Ã(~x, z))
or D(z,realΠ,A(~x, z)).

Definition A.1 (Precise Secure Computation) Let f be an m-ary function, Π a protocol com-
puting f , Z a set of subsets of [m], p : IN × IN → IN , and ε : IN → IR. Protocol Π is a Z-secure
computation of f with precision p and ε-statistical error if, for all Z ∈ Z and every real-model
adversary A that controls the players in Z, there exists an ideal-model adversary Ã, called the sim-
ulator, that controls the players in Z such that, for all n ∈ N , all ~x = (x1, . . . , xm) ∈ ({0, 1}n)m,
and all z ∈ {0, 1}∗, the following conditions hold:

1. For every distinguisher D,∣∣∣PrU [D(z,realΠ,A(~x, z)) = 1]− PrU [D(z, idealf,Ã(~x, z))] = 1
∣∣∣ ≤ ε(n).

2. PrU [steps(Ã, viewf,Ã(~x, z)) ≤ p(n, steps(A, Ã(viewf,Ã(~x, z))]) = 1.15

15Note that the three occurrences of PrU in the first two clauses represent slightly different probability measures,
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Π is a Z-secure computation of f with precision p and (T, ε)-computational error if it satisfies the
two conditions above with the adversary A and the distinguisher D restricted to being computable
by a TM with running time bounded by T (·).

Protocol Π is a Z-secure computation of f with statistical precision p if there exists some
negligible function ε such that Π is a Z-secure computation of f with precision p and ε-statistical
error. Finally, protocol Π is a Z-secure computation of f with computational precision p if for
every polynomial T , there exists some negligible function ε such that Π is a Z-secure computation
of f with precision p and (T, ε)-computational error.

The traditional notion of secure computation is obtained by replacing condition 2 with the require-
ment that the worst-case running-time of Ã is polynomially related to the worst-case running time
of A.

The following theorems were provided by Micali and Pass [2007, 2006], using the results of
Ben-Or, Goldwasser and Wigderson [1988] and Goldreich, Micali and Wigderson [1987]. Let Zmt
denote all the subsets of [m] containing t or less elements. An m-ary functionality f is said to be
well-formed if it essentially ignores arguments that are not in ({0, 1}n)m for some n. More precisely,
if there exist j, j′ such that |xj | 6= |xj′ |, then fi(~x) = λ for all i ∈ [m]. (See [Goldreich 2004, p. 617]
for motivation and more details.)

Theorem A.2 For every well-formed m-ary functionality f , there exists a precision function p
such that p(n, t) = O(t) and a protocol Π that Zmdm/3e−1-securely computes f with precision p and
0-statistical error.

This result can also be extended to more general adversary structures by relying on the results of
[Hirt and Maurer 2000]. We can also consider secure computation of specific 2-party functionalities.

Theorem A.3 Suppose that there exists an enhanced trapdoor permutation.16 For every well-
formed 2-ary functionality f where only one party gets an output (i.e., f1(·) = 0), there exists a
a precision function p such that p(n, t) = O(t) and protocol Π that Z2

1 -securely computes f with
computational-precision p.

Micali and Pass [2006] also obtain unconditional results (using statistical security) for the special
case of zero-knowledge proofs. We refer the reader to [Micali and Pass 2006; Pass 2006] for more
details.

A.1 Weak Precise Secure Computation

Universal implementation is not equivalent to precise secure computation, but to a (quite natural)
weakening of it. Weak precise secure computation, which we are about to define, differs from precise
secure computation in the following respects:

• Just as in the traditional definition of zero knowledge [Goldwasser, Micali, and Rackoff 1989],
precise zero knowledge requires that for every adversary, there exists a simulator that, on all
inputs, produces an interaction that no distinguisher can distinguish from the real interaction.
This simulator must work for all inputs and all distinguishers. In analogy with the notion
of “weak zero knowledge” [Dwork, Naor, Reingold, and Stockmeyer 2003], we here switch

although this is hidden by the fact that we have omitted the superscripts. The first occurrence of PrU should be

Pr
m−|Z|+3
U , since we are taking the probability over the m + 2 − |Z| random inputs to realf,A and the additional

random input to D; similarly, the second and third occurrences of PrU should be Pr3U .
16See [Goldreich 2004] for a definition of enhanced trapdoor permutations; the existence of such permutations is

implied by the ”standard” hardness of factoring assumptions.
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the order of the quantifiers and require instead that for every input distribution Pr over
~x ∈ ({0, 1}n)m and z ∈ {0, 1}∗, and every distinguisher D, there exists a (precise) simulator
that “tricks” D; in essence, we allow there to be a different simulator for each distinguisher.
As argued by Dwork et al. [2003], this order of quantification is arguably reasonable when
dealing with concrete security. To show that a computation is secure in every concrete setting,
it suffices to show that, in every concrete setting (where a “concrete setting” is characterized
by an input distribution and the distinguisher used by the adversary), there is a simulator.

• We further weaken this condition by requiring only that the probability of the distinguisher
outputting 1 on a real view be (essentially) no higher than the probability of outputting 1
on a simulated view. In contrast, the traditional definition requires these probabilities to be
(essentially) equal. If we think of the distinguisher outputting 1 as meaning that the adversary
has learned some important feature, then we are saying that the likelihood of the adversary
learning an important feature in the real execution is essentially no higher than that of the
adversary learning an important feature in the “ideal” computation. This condition on the
distinguisher is in keeping with the standard intuition of the role of the distinguisher.

• We allow the adversary and the simulator to depend not only on the probability distribution,
but also on the particular security parameter n (in contrast, the definition of [Dwork, Naor,
Reingold, and Stockmeyer 2003] is uniform). That is why, when considering weak precise
secure computation with (T, ε)-computational error, we require that the adversary A and the
simulator D be computable by circuits of size at most T (n) (with a possibly different circuit
for each n), rather than a Turing machine with running time T (n). Again, this is arguably
reasonable in a concrete setting, where the security parameter is known.

• We also allow the computation not to meet the precision bounds with a small probability.
The obvious way to do this is to change the requirement in the definition of precise secure
computation by replacing 1 by 1− ε, to get

PrU [steps(Ã, viewf,Ã(~x, z)) ≤ p(n, steps(A, Ã(viewf,Ã(~x, z))] ≥ 1− ε(n),

where n is the input length. We change this requirement in two ways. First, rather than just
requiring that this precision inequality hold for all ~x and z, we require that the probability
of the inequality holding be at least 1 − ε for all distributions Pr over ~x ∈ ({0, 1}n)m and
z ∈ {0, 1}∗.
The second difference is to add an extra argument to the distinguisher, which tells the distin-
guisher whether the precision requirement is met. In the real computation, we assume that
the precision requirement is always met, thus, whenever it is not met, the distinguisher can
distinguish the real and ideal computations. We still want the probability that the distin-
guisher can distinguish the real and ideal computations to be at most ε(n). For example, our
definition disallows a scenario where the complexity bound is not met with probability ε(n)/2
and the distinguisher can distinguish the computations with (without taking the complexity
bound into account) with probability ε(n)/2.

• In keeping with the more abstract approach used in the definition of robust implementation,
the definition of weak precise secure computation is parametrized by the abstract complexity
measure C , rather than using steps. This just gives us a more general definition; we can
always instantiate C to measure running time.

Definition A.4 (Weak Precise Secure Computation) Let f , Π, Z, p, and ε be as in the def-
inition of precise secure computation, and let ~C be a complexity function. Protocol Π is a weak
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Z-secure computation of f with ~C -precision p and ε-statistical error if, for all n ∈ N , all Z ∈ Z, all
real-execution adversaries A that control the players in Z, all distinguishers D, and all probability
distributions Pr over ({0, 1}n)m × {0, 1}∗, there exists an ideal-execution adversary Ã that controls
the players in Z such that

Pr+({(~x, z) : D(z,realΠ,A(~x, z), 1) = 1})
−Pr+({(~x, z) : D(z, idealf,Ã(~x, z), preciseZ,A,Ã(n, viewf,Ã(~x, z))) = 1}) ≤ ε(n),

where preciseZ,A,Ã(n, v) = 1 if and only if CZ(Ã, v) ≤ p(n,CZ(A, Ã(v))).17 Π is a weak Z-secure

computation of f with ~C -precision p and (T, ε)-computational error if it satisfies the condition
above with the adversary A and the distinguisher D restricted to being computable by a randomized
circuit of size T (n). Protocol Π is a Z-weak secure computation of f with statistical ~C -precision
p if there exists some negligible function ε such that Π is a Z-weak secure computation of f with
precision p and statistical ε-error. Finally, Protocol Π is a Z-weak secure computation of f with
computational ~C -precision p if for every polynomial T (·), there exists some negligible function ε
such that Π is a Z-weak secure computation of f with precision p and (T, ε)-computational error.

Our terminology suggests that weak precise secure computation is weaker than precise secure
computation. This is almost immediate from the definitions if CZ(M,v) = steps(M,v) for all
Z ∈ Z. A more interesting setting considers a complexity measure that can depend on steps(M,v)
and the size of the description of M . It directly follows by inspection that Theorems A.2 and A.3
also hold if, for example, CZ(M, v) = steps(M, v) +O(|M |) for all Z ∈ Z, since the simulators in
those results incur only a constant additive overhead in size. (This is not a coincidence. As argued
in [Micali and Pass 2006; Pass 2006], the definition of precise simulation guarantees the existence
of a “universal” simulator S, with “essentially” the same precision, that works for every adversary
A, provided that S also gets the code of A; namely given a real-execution adversary A, the ideal-
execution adversary Ã = S(A).18 Since |S| = O(1), it follows that |Ã| = |S|+ |A| = O(|A|).) That
is, we have the following variants of Theorems A.2 and A.3:

Theorem A.5 For every well-formed m-ary functionality f , CZ(M, v) = steps(M, v) + O(|M |)
for all sets Z, there exists a precision function p such that p(n, t) = O(t) and a protocol Π that
weak Zmdm/3e−1-securely computes f with ~C -precision p and 0-statistical error.

Theorem A.6 Suppose that there exists an enhanced trapdoor permutation, and CZ(M, v) =
steps(M,v) + O(|M |) for all sets Z. For every well-formed 2-ary functionality f where only one
party gets an output (i.e., f1(·) = λ), there exists a precision function p such that p(n, t) = O(t)
and a protocol Π that weak Z2

1 -securely computes f with computational ~C -precision p.

It is easy to see that the theorems above continue to hold when considering “coarse” versions
of the above complexity functions, where, say, n2 computational steps (or size) correspond to one
unit of complexity (in canonical machine game with input length n).

B Proof of Theorem 4.2

In this section, we prove Theorem 4.2. Recall that for one direction of our main theorem we require
that certain operations, like moving output from one tape to another, do not incur any additional
complexity. We now make this precise.

17Recall that Pr+ denotes the product of Pr and PrU (here, the first Pr+ is actually Pr+(m+3−|Z|), while the second
is Pr+3).

18This follows by considering the simulator S for the universal TM (which receives the code to be executed as
auxiliary input).
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Recall that in the definition of a secure computation, the ideal-execution adversary, MZ , is an
algorithm that controls the players in Z and finally provides an output for each of the players it
controls and additionally produces an output of its own (which is supposed to be the reconstructed
view of the real-execution adversary). Roughly speaking, a complexity function is output-invariant
if MZ can “shuffle” content between its tapes at no cost.

Definition B.1 A complexity function C is output-invariant if, for every set Z of players, there
exists some canonical player iZ ∈ Z such that the following three conditions hold:

1. (Outputting view) For every machine MZ controlling the players in Z, there exists some
machine M ′Z with the same complexity as MZ such that the output of M ′Z(v) is identical to
MZ(v) except that player iZ outputs y; v, where y is the output of iZ in the execution of MZ(v)
(i.e., M ′Z is identical to MZ with the only exception being that player iZ also outputs the view
of M ′Z).

2. (Moving content to a different tape) For every machine M ′Z controlling players Z, there
exists some machine MZ with the same complexity as MZ such that the output of MZ(v) is
identical to M ′Z(v) except if player iZ outputs y; v′ for some v′ ∈ {0, 1}∗ in the execution of
M ′Z(v). In that case, the only difference is that player iZ outputs only y and MZ(v) outputs
v′.

3. (Duplicating content to another output tape) For every machine M ′Z controlling play-
ers Z, there exists some machine MZ with the same complexity as MZ such that the output
of MZ(v) is identical to M ′Z(v) except if player iZ outputs y; v′ for some v′ ∈ {0, 1}∗ in the
execution of M ′Z(v). In that case, the only difference is that MZ(v) outputs v′.

Note that the only difference between condition 2 and 3 is that in condition 2, player iz only outputs
y, whereas in condition 3 it still outputs its original output y; v′.

We stress that we need to consider output-invariant complexity functions only to show that
universal implementation implies precise secure computation.

We now prove each direction of Theorem 4.2 separately, to make clear what assumptions we
need for each part. We start with the “only if” direction.

Theorem B.2 Let ~M, f,F ,Z be as in the statement of Theorem 4.2, and let ~C be an ~M -acceptable
complexity function. If ~M is an abort-preserving weak Z-secure computation of f with C -precision
p and error ε, then ( ~M, comm) is a strong (G ~C ,Z, p)-universal implementation of F with error ε.

Proof: Suppose that ~M is a weak Z-secure computation of f with ~C -precision p and ε-statistical
error. Since ~M computes f , for every game G ∈ G ~C , the action profile induced by ~M in (G, comm) is
identically distributed to the action profile induced by ~ΛF in (G,F). We now show that ( ~M, comm)
is a (G ~C ,Z, p)-universal implementation of F with error ε.

Claim B.3 ( ~M, comm) is a (G ~C ,Z, p)-universal implementation of F with error ε.

Proof: Let G ∈ G ~C be a game with input length n such that ~ΛF is a p(n, ·)-robust Z-safe
equilibrium in (G,F). We show that ~M is a Z-safe ε(n)-equilibrium in (G, comm). Recall that this
is equivalent to showing that no coalition of players Z ∈ Z can increase their utility by more than
ε(n) by deviating from their prescribed strategies. In other words, for all Z ∈ Z and machines M ′Z ,
we need to show that

U
(G,comm)
Z (M ′Z , ~M−Z) ≤ U (G,comm)

Z (M b
Z , ~M−Z) + ε(n).
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Suppose, by way of contradiction, that there exists some machine M ′Z such that

U
(G,comm)
Z (M ′Z , ~M−Z) > U

(G,comm)
Z (M b

Z ,
~M−Z) + ε(n). (1)

We now obtain a contradiction by showing that there exists some other game G̃ that is at most a
p(n, ·)-speedup of G and a machine M̃Z such that

U
(G̃,F)
Z (M̃Z , ~ΛF−Z) > U

(G̃,F)
Z ((ΛF )bZ , ~Λ

F
−Z). (2)

This contradicts the assumption that ΛF is a p-robust equilibrium.
Note that the machine M ′Z can be viewed as a real-execution adversary controlling the players

in Z. The machine M̃Z will be defined as the simulator for M ′Z for some appropriately defined input
distribution Pr on T × {0, 1}∗ and distinguisher D. Intuitively, Pr will be the type distribution in
the game G (where z is nature’s type), and the distinguisher D will capture the utility function
uZ . There is an obvious problem with using the distinguisher to capture the utility function: the
distinguisher outputs a single bit, whereas the utility function outputs a real. To get around this
problem, we define a probabilistic distinguisher that outputs 1 with a probability that is determined
by the expected utility; this is possible since the game is normalized, so the expected utility is
guaranteed to be in [0, 1]. We also cannot quite use the same distribution for the machine M as
for the game G. The problem is that, if G ∈ G is a canonical game with input length n, the types
in G have the form x; z, where x ∈ {0, 1}n. The protocol ΛFi in (G, comm) ignores the z, and sends
the mediator the x. On the other hand, in a secure computation, the honest players provide their
input (i.e., their type) to the mediator. Thus, we must convert a type xi; zi of a player i in the
game G to a type x for ΛFi .

More formally, we proceed as follows. Suppose that G is a canonical game with input length n,
and the type space of G is T . Given ~t = (x1; z1, . . . , xn; zn, tN ) ∈ T , define ~tD by taking tDi = x1; zi
if i ∈ Z, tDi = xi if i /∈ Z, and tDN = tN ; z1; . . . ; zm. Say that (~x, z) is acceptable if there is some
(necessarily unique) ~t ∈ T , z = tD1 ; . . . ; tDn ; tDN , and ~x = (tD1 , . . . , t

D
m). If (~x, z) is acceptable, let

~t~x,z be the element of T determined this way. If PrG is the probability distribution over types,
Pr(~x, z) = PrG(~t~x,z) if (~x, z) is acceptable, and Pr(~x, z) = 0 otherwise.

Define the probabilistic distinguisher D as follows: if precise = 0 or (~x, z) is not accept-
able, then D(z, (~x, ~y, view), precise) = 0; otherwise D(z, (~x, ~y, view), precise) = 1 with probability
uZ(~t~x,z, ~y,CZ(M ′Z , view), ~c0−Z).

Since we can view M ′Z as a real-execution adversary controlling the players in Z, the definition
of weak precise secure computation guarantees that, for the distinguisher D and the distribution
Pr described above, there exists a simulator M̃Z such that

Pr+({(~x, z) : D(z,real ~M,M ′Z
(~x, z), 1) = 1})

−Pr+({(~x, z) : D(z, idealf,M̃Z
(~x, z), preciseZ,M ′Z ,M̃Z

(n, viewf,M̃Z
(~x, z)) = 1}) ≤ ε(n).

(3)

We can assume without loss of generality that if M̃Z sends no messages and outputs nothing, then
M̃Z = ⊥. (This can only make its complexity smaller and thus make D output 1 more often.)

We next define a new complexity function ~̃C that, by construction, will be at most a p(n, ·)-
speedup of ~C . Intuitively, this complexity function will consider the speedup required to make up
for the “overhead” of the simulator M̃Z when simulating M ′Z . To ensure that the speedup is not
too large, we incur it only on views where the simulation by M̃Z is “precise”. Specifically, let the
complexity function ~̃C be identical to ~C , except that if preciseZ,M ′Z ,M̃Z

(n, ṽ) = 1 and C (M̃Z , ṽ) ≥
C (M ′Z , v), where v is the view output by M̃Z(ṽ), then C̃Z(M̃Z , ṽ) = CZ(M ′Z , v). (Note that ṽ is a
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view for the ideal execution. M ′Z runs in the real execution, so we need to give it as input the view
output by M̃Z given view ṽ, namely v. Recall that the simulator M̃Z is trying to reconstruct the
view of M ′Z . Also, note that we did not define C̃Z(M̃Z , ṽ) = CZ(M ′Z , v) if C (M̃Z , ṽ) < C (M ′Z , v),
for then C̃Z would not be a speedup of CZ . Finally, to ensure that C̃Z assigns 0 complexity only to
⊥, as is required for a complexity function. Note that if M ′Z = ⊥ then, without loss of generality,
M̃Z = ⊥ as well; this directly follows from the fact that ~M is abort-preserving.) By construction,
C̃Z is at most a p(n, ·)-speedup of CZ . Let G̃ be identical to G except that the complexity function

is ~̃C . It is immediate that G̃ is at most a p(n, ·)-speedup of G.
We claim that it follows from the definition of D that

U
(G̃,F)
Z (M̃Z , ~ΛF−Z) ≥ Pr+({(~x, z) : D(z, idealf,M̃Z

(~x, z), preciseZ,M ′Z ,M̃Z
(n, viewf,M̃ (~x, z))) = 1}).

(4)
To see this, let aZ(~t, ~r) (resp., ai(~t, ~r)) denote the output that M̃Z places on the output tapes of
the players in Z (resp., the output of player i /∈ Z) when the strategy profile (M̃Z ,ΛF−Z) is used
with mediator F , the type profile is ~t, and the random strings are ~r. (Note that these outputs are
completely determined by ~t and ~r.) Similarly, let viewM̃Z

(~t, ~r) and viewΛFi
(~t, ~r) denote the views

of the adversary and player i /∈ Z in this case.
Since each type profile ~t ∈ T is t~x,z for some (~x, z), and PrG(t~x,z) = Pr(~x, z), we have

U
(G̃,F)
Z (M̃Z , ~ΛF−Z)

=
∑
~t,~r Pr+

G(~t, ~r)uZ(~t, (aZ(~t, ~r),~a−Z(~t, ~r)), (C̃Z(M̃Z , viewM̃Z
(~t, ~r)), ~̃C−Z(ΛF−Z , view−Z(~t, ~r))))

=
∑

~x,z,~r Pr+(~x, z, ~r)uZ(~t~x,z, (aZ(~t~x,z, ~r),~a−Z(~t~x,z, ~r)), (C̃Z(M̃Z , viewM̃Z
(~t~x,z, ~r)), ~c0−Z)).

In the third line, we use the fact that C̃i(ΛFi , view i(~t, ~r)) = Ci(ΛFi , view i(~t, ~r)) = c0 for all i /∈ Z,
since C is ~M -acceptable. Thus, it suffices to show that, for all ~x, z, and ~r,

uZ(~t~x,z, (aZ(~t~x,z, ~r),~a−Z(~t~x,z, ~r)), C̃Z(M̃Z , viewM̃Z
(~t~x,z, ~r)), ~c0−Z)

≥ PrU (D(z, idealf,M̃Z
(~x, z, ~r), preciseZ,M ′Z ,M̃Z

(n, viewf,M̃ (~x, z, ~r))) = 1).
(5)

This inequality clearly holds if preciseZ,M ′Z ,M̃Z
(n, viewf,M̃ (~x, z), ~r) = 0, since in that case the right-

hand side is 0.19 Next consider the case when preciseZ,M ′Z ,M̃Z
(n, viewf,M̃Z

(~x, z, ~r)) = 1. In this case,
by the definition of D, the right-hand side equals

uZ(~t~x,z, (aZ(~t~x,z, ~r),~a−Z(~t~x,z, ~r)), (CZ(M ′Z , vZ(~t~x,z, ~r)), ~c0−Z)),

where vZ(~t~x,z, ~r) = M̃Z(viewM̃Z
(~t~x,z, ~r)) (i.e., the view output by M̃Z). By the definition of C̃ , it fol-

lows that when CZ(M̃Z , viewM̃Z
(~t~x,z, ~r)) ≥ CZ(M ′Z , vZ(~t~x,z, ~r)) and preciseZ,M ′Z ,M̃Z

(n, viewf,M̃Z
(~x, z, ~r)) =

1, then C̃Z(M̃Z , viewM̃Z
(~t~x,z, ~r)) = CZ(M ′Z , vZ(~t~x,z)), and (5) holds with ≥ replaced by =. On the

other hand, when CZ(M̃Z , viewM̃Z
(~t~x,z, ~r)) < CZ(M ′Z , vZ(~t~x,z, ~r)), then C̃Z(M̃Z , viewM̃Z

(~t~x,z, ~r)) =
CZ(M̃Z , viewM̃Z

(~t~x,z, ~r)), and thus CZ(M ′Z , vZ(~t~x,z, ~r)) > C̃Z(M̃Z , viewM̃Z
(~t~x,z, ~r)); (5) then holds

by the monotonicity of uZ .
Similarly, we have that

Pr+({(~x, z) : D(z,real ~M,M ′Z
(~x, z), 1) = 1}) = U

(G,comm)
Z (M ′Z , ~M−Z). (6)

19Note that we here rely on the fact that G is C -natural and hence normalized, so that the range of uZ is [0, 1].
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In more detail, a similar argument to that for (4) shows that it suffices to show that, for all ~x, z,
and ~r,

uZ(~t~x,z, aZ(~t~x,z, ~r),~a−Z(~t~x,z, ~r),CZ(M ′Z , viewM ′Z
(~t~x,z, ~r)),C−Z(M−Z , viewM−Z

(~t~x,z, ~r)))
= PrU (D(z,real ~M,M ′Z

(~x, z, ~r), 1) = 1),

where aZ(~t, ~r), ai(~t, ~r), viewM ′Z
(~t, ~r), and viewMi(~t, ~r) are appropriately defined outputs and views

in an execution of (M ′Z , ~M ′Z). Since ~C is ~M -acceptable, C−Z(M−Z , viewM−Z
(~t~x,z, ~r)) = ~c0−Z , and

Equation 6 follows.
It now follows immediately from (3), (4), and (6) that

U
(G̃,F)
Z (M̃Z , ~ΛF−Z) ≥ U (G,comm)

Z (M ′Z , ~M−Z)− ε(n). (7)

Combined with (1), this yields

U
(G̃,F)
Z (M̃Z , ~ΛF−Z) > U

(G,comm)
Z (M b

Z , ~M−Z). (8)

Since ~M and F both compute f (and thus must have the same distribution over outcomes), it
follows that

U
(G,comm)
Z (M b

Z , ~M−Z) = U
(G,F)
Z ((ΛF )bZ , ~Λ

F
−Z) = U

(G̃,F)
Z ((ΛF )bZ , ~Λ

F
−Z). (9)

For the last equality, recall that G̃ is identical to G except for the complexity of M̃Z (and hence
the utility of strategy profiles involving M̃Z). Thus, the last equality follows once we show that
(ΛF )bZ 6= M̃Z . This follows from the various technical assumptions we have made. If (ΛF )bZ = M̃Z ,
then M̃Z sends no messages (all the messages sent by ΛF to the communication mediator are
ignored, since they have the wrong form), and does not output anything (since messages from the
communication mediator are not signed by F). Thus, M̃Z acts like ⊥. By assumption, this means
that M̃Z = ⊥, so M̃Z 6= (ΛF )bZ .

From (8) and (9), we conclude that

U
(G̃,F)
Z (M̃Z , ~ΛF−Z) > U

(G̃,F)
Z ((ΛF )bZ , ~Λ

F
−Z),

which gives the desired contradiction.

It remains to show that ( ~M, comm) is also a strong (G ~C ,Z, p)-universal implementation of F
with error ε. That is, if ⊥ is a p(n, ·)-best response to ~ΛF−Z in (G,F) then ⊥ an ε-best response to
~M−Z in (G, comm). Suppose, by way of contradiction, that there exists some M ′Z such that

U
(G,comm)
Z (M ′Z , ~M−Z) > U

(G,comm)
Z (⊥, ~M−Z) + ε(n). (10)

It follows using the same proof as in Claim B.3 (see Equation 7) that there exists a game G̃ that
is at most a p(n, ·) speedup of G and a machine M̃Z such that

U
(G̃,F)
Z (M̃Z , ~ΛF−Z) > U

(G,comm)
Z (⊥, ~M−Z)− ε(n).

Combined with (10), this yields

U
(G̃,F)
Z (M̃Z , ~ΛF−Z) > U

(G,comm)
Z (⊥, ~M−Z). (11)
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Since ~M is an abort-preserving computation of f and F computes f (and thus must have the same
distribution over outcomes), it follows that

U
(G,comm)
Z (⊥, ~M−Z) = U

(G,F)
Z (⊥, ~ΛF−Z) = U

(G̃,F)
Z (⊥, ~ΛF−Z). (12)

The last equality follows as in the proof of Claim B.3, since G̃ is identical to G except for the
complexity of M̃Z . Combining 11 and 12 we have

U
(G̃,F)
Z (M̃Z , ~ΛF−Z) > U

(G̃,F)
Z (⊥, ~ΛF−Z).

But this contradicts the assumption that ⊥ is a p(n, ·)-robust best response to ~ΛF−Z in (G,F).
We now prove the “if” direction of Theorem 4.2. For this direction, we need the assumption

that ~C is output-invariant. Moreover, we get a slightly weaker implication: we show only that
for every ε, ε′ such that ε′ < ε it holds that strong universal implementation with error ε′ implies
weak secure computation with error ε. (After proving this result, we introduce some additional
restrictions on C that suffice to prove the implication for the case when ε′ = ε.) However, we no
longer need the assumption that ~M is abort-preserving.

Theorem B.4 Suppose that ~M, f,F ,Z are as above, ε′ < ε, and ~C is an ~M -acceptable output-
invariant complexity function. If ( ~M, comm) is a strong (G ~C ,Z, p)-universal implementation of F
with error ε′, then ~M is a weak Z-secure computation of f with C -precision p and error ε.

Proof: Let ( ~M, comm) be a (G ~C ,Z, p)-universal implementation of F with error ε(·). We show that
~M Z-securely computes f with C -precision p(·, ·) and error ε(·). Suppose, by way of contradiction,

that there exists some n ∈ IN , a distribution Pr on ({0, 1}n)m × {0, 1}∗, a subset Z ∈ Z, a
distinguisher D, and a machine M ′Z ∈M that controls the players in Z such that for all machines
M̃Z ,

Pr+({(~x, z) : D(z,real ~M,M ′Z
(~x, z), 1) = 1})

− Pr+({(~x, z) : D(z, idealf,M̃Z
(~x, z), preciseZ,M ′Z ,M̃Z

(n, viewf,M̃Z
(~x, z) = 1))) > ε(n).

(13)

To obtain a contradiction we consider two cases: M ′Z = ⊥ or M ′Z 6= ⊥.

Case 1: M ′Z = ⊥. We define a game G ∈ G ~C such that ~ΛF−Z is a p-robust Z-safe equilibrium in
the game (G,F), and show that

U
(G,comm)
Z (M ′Z ,M−Z) > U

(G,comm)
Z (M b

Z ,
~M−Z) + ε(n),

which contradicts the assumption that ~M is a (G,Z, p)-universal implementation of F .
Intuitively, G is such that the strategy ⊥ (which is the only one that has complexity 0) gets a

utility that is determined by the probability with which the distinguisher D outputs 1 (on input
the type and action profile). On the other hand, all other strategies (i.e., all strategies with positive
complexity) get the same utility d. If d is selected so that the probability of D outputting 1 in
(G,F) is at most d, it follows that ~ΛF is a p-robust Nash equilibrium. However, ⊥ will be a
profitable deviation in (G, comm).

In more detail, we proceed as follows. Let

d = Pr+({(~x, z) : D(z, idealf,⊥(~x, z), 1) = 1}). (14)
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Consider the game G = ([m],M,Pr, ~C , ~u), where uZ′(~t,~a,~c) = 0 for all Z ′ 6= Z and

uZ((t1, . . . , tm, tN ),~a, (cZ ,~c−Z)) =

{
PrU (D(tN , ((t1, . . . , tm),~a, λ), 1) = 1) if cZ = 0
d otherwise,

where, as before, PrU is the uniform distribution on {0, 1}∞ (D’s random string). It follows from
the definition of D (and the fact that only ⊥ can have complexity 0) that, for all games G̃ that are

speedups of G and all machines M̃Z , U (G̃,F)
Z (M̃Z , ~ΛF−Z) ≤ d.

Since M b
Z 6= ⊥ (since C is ~M -acceptable and ~M thus has complexity c0 > 0), we conclude that

~ΛF is a p-robust Z-safe Nash equilibrium. In contrast (again sinceM b
Z 6= ⊥), U (G,comm)

Z (M b
Z ,

~M−Z) =
d. But, since M ′Z = ⊥ by assumption, we have

U
(G,comm)
Z (⊥, ~M−Z)

= U
(G,comm)
Z (M ′Z , ~M−Z)

= Pr+({(~x, z) : D(z,real ~M,M ′Z
(~x, z), 1) = 1})

> d+ ε(n) [by (13) and (14)],

which is a contradiction.

Case 2: M ′Z 6= ⊥. To obtain a contradiction, we first show that, without loss of generality, M ′Z
lets one of the players in Z output the view of M ′Z . Next, we define a game G ∈ G ~C such that ⊥
is a p(n, ·)-best response to ~ΛF−Z in (G,F). We then show that

U
(G,comm)
Z (M ′Z ,M−Z) ≥ U (G,comm)

Z (⊥, ~M−Z) + ε(n),

which contradicts the assumption that ~M is a strong (G,Z, p)-universal implementation of F with
error ε′ < ε.

To prove the first step, note that by the first condition in the definition of output-invariant, there
exists some canonical player iZ ∈ Z and a machine M ′′Z controlling the players in Z with the same
complexity asM ′Z such that the output ofM ′′Z(v) is identical toM ′Z(v), except that player iZ outputs
y; v, where y is the output of iZ in the execution of M ′Z(v). We can obtain a counterexample with
M ′′Z just as well as with M ′Z by considering the distinguisher D′ which is defined identically to D, ex-
cept that if yiZ = y; v′ for some v′ ∈ {0, 1}∗, then D′(z, (~x, ~y, v), precise) = D(z, (~x, ~y′, v′), precise),
where ~y′ is identical to ~y except that y′iZ = y. Consider an adversary M̃ ′Z . We claim that

Pr+({(~x, z) : D′(z,real ~M,M ′′Z
(~x, z), 1) = 1})

− Pr+({(~x, z) : D′(z, idealf,M̃ ′Z
(~x, z), preciseZ,M ′Z ,M̃ ′Z (n, viewf,M̃ ′Z = (~x, z))) = 1}) > ε(n).

(15)
By definition of D′ and M ′′Z , it follows that

Pr+({(~x, z) : D(z,real ~M,M ′Z
(~x, z), 1) = 1}) = Pr+({(~x, z) : D′(z,real ~M,M ′′Z

(~x, z), 1) = 1}).
(16)

By the second condition of the definition of output-invariant, there exists a machine M̃Z with
the same complexity as M̃ ′Z such that the output of M̃Z(v) is identical to M̃ ′Z(v) except that if
player iZ outputs y; v′ for some v′ ∈ {0, 1}∗ in the execution by M̃ ′Z(v), then it outputs only y in
the execution by M̃Z(v); furthermore, M̃Z(v) outputs v′ on its own output tape (representing the
reconstructed view of M ′Z). It follows that

Pr+({(~x, z) : D′(z, idealf,M̃ ′Z
(~x, z), preciseZ,M ′′Z ,M̃ ′Z (n, viewf,M̃ ′(~x, z))) = 1})

= Pr+({(~x, z) : D(z, idealf,M̃Z
(~x, z), preciseZ,M ′Z ,M̃Z

(n, viewf,M̃ (~x, z))) = 1}).
(17)
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Equation (15) is now immediate from (13), (16), and (17).
We now define a game G ∈ G ~C such that ⊥ is a p(n, ·)-robust best response to ~ΛF−Z in (G,F),

but ⊥ is not an ε-best response to ~M−Z in (G, comm). Intuitively, G is such that simply playing
⊥ guarantees a high payoff. However, if a coalition controlling Z can provide a view that cannot
be “simulated”, then it receives an even higher payoff. By definition, it will be hard to find such
a view in the mediated game. However, by our assumption that ~M is not a secure computation
protocol, it is possible for the machine controlling Z to obtain such a view in the cheap-talk game.

In more detail, we proceed as follows. Let

d = sup
M̃Z∈M

Pr+({(~x, z) : D(z, idealf,M̃Z
(~x, z), preciseZ,M ′ZM̃Z

(n, viewf,M̃Z
(~x, z))) = 1}). (18)

Consider the game G = ([m],M,Pr, ~C , ~u), where uZ′(~t,~a,~c) = 0 for all Z ′ 6= Z and

uZ(~t,~a,~c) =


d if cZ = 0
PrU (D(tN , ((t1, . . . , tm),~a, v), 1) = 1) if aiZ = y; v, 0 < p(n, cZ) ≤ p(n,CZ(M ′Z , v))
0 otherwise.

Clearly, G ∈ G ~C .

Claim B.5 ⊥ is a p(n, ·)-robust best response to ~ΛF−Z in (G,F).

Proof: Suppose, by way of contradiction, that there exists some game G̃ with complexity profile
~̃C that is at most a p(n, ·)-speedup of G and a machine M∗Z such that

U
(G̃,F)
Z (M∗Z , ~Λ

F
−Z) > U

(G̃,F)
Z (⊥, ~ΛF−Z). (19)

It is immediate from (19) that M∗Z 6= ⊥. Thus, it follows from the definition of complexity func-
tions that C̃ (M∗Z , v) 6= 0 for all v ∈ {0, 1}∗. That means that when calculating U (G̃,F)(M∗Z ,Λ

F
−Z),

the second or third conditions in the definition of uZ must apply. Moreover, the second condi-
tion applies on type (~x, z) only if aiZ has the form y; v and 0 < p(n, C̃Z(M∗Z , viewf,M∗Z (~x, z)) ≤
p(n,CZ(M ′Z , v)). Since C̃ is at most a p-speedup of C , the latter condition implies that 0 <

CZ(M∗Z , viewf,M∗Z (~x, z)) ≤ p(n,CZ(M ′Z , v)). Hence, U (G̃,F)
Z (M∗Z , ~Λ

F
−Z) is at most

Pr+({(~x, z) : D(z, ideal′f,M∗Z
(~x, z), precise′Z,M ′Z ,M∗Z (n, viewf,M∗Z (~x, z))) = 1}),

where ideal′f,M∗Z
is defined identically to ideal, except that yiZ (the output of player iZ) is parsed

as y; v, and v is taken as the output of M∗Z (representing the reconstructed view of M ′Z); analogously,
precise′ is defined just as precise except that v is taken as the view of M ′Z reconstructed by M∗Z (if

yiZ = y; v). Since CZ(⊥, v) = 0 for all v, the definition of uZ guarantees that U (G̃,F)
Z (⊥, ~ΛF−Z) = d.

It thus follows from (19) that

U
(G̃,F)
Z (M∗Z , ~Λ

F
−Z) > d.

Thus,

Pr+({(~x, z) : D(z, ideal′f,M∗Z
(~x, z), precise′Z,M ′Z ,M∗Z (n, viewf,M∗Z (~x, z))) = 1}) > d.

The third condition of the definition of output-invariant complexity implies that there must exist
some M∗∗Z such that

Pr+({(~x, z) : D(z, idealf,M∗∗Z
(~x, z), preciseZ,M ′Z ,M∗∗Z

(n, viewf,M∗∗Z
(~x, z))) = 1}) > d,

37



which contradicts (18). Thus, ~ΛF is a p-robust Z-equilibrium of (G,F).
Since ( ~M, comm) is a strong (G ~C ,Z, p)-universal implementation of F with error ε, and ⊥ is a

p(n, ·)-robust best response to ~ΛF−Z in (G,F), it must be the case that ⊥ is an ε-best response to
~M−Z in (G, comm). However, by definition of uZ , we have that

U
(G,comm)
Z (M ′Z , ~M−Z)

=
∑
~t,~r Pr+(~t, ~r)uZ(~t,M ′Z(viewM ′Z

(~t, ~r)), ~M−Z(view ~M−Z
(~t, ~r)),CZ(M ′Z , viewM ′Z

(~t, ~r), ~C−Z( ~M−Z , view ~M−Z
(~t, ~r)))

= Pr+({(~x, z) : D(z,real ~M,M ′Z
(n, ~x, z), 1) = 1})

where viewM ′Z
(~t, ~r) (resp., view ~M−Z

(~t, ~r)) denotes the view of M ′Z (resp. ~M−Z) when the strategy

profile (M ′Z , ~M−Z) is used with mediator comm. The second equality follows from the fact that
player iZ outputs the view of M ′Z . Recall that (13) holds (with strict inequality) for every machine
M̃Z . It follows that

U
(G,comm)
Z (M ′Z , ~M−Z)

= Pr+({(~x, z) : D(z,real ~M,M ′Z
(~x, z), 1) = 1})

≥ supM̃∈M Pr+({(~x, z) : D(z, idealf,M̃Z
(~x, z), preciseZ,M ′Z ,M̃Z

(n, viewf,M̃Z
(~x, z) = 1))) + ε(n)

= d+ ε(n)
(20)

where the last equality follows from (18).
Since U (G,comm)

Z (⊥, ~M−Z) = d, this is a contradiction. This completes the proof of the theorem.

Note that if the set

S = {Pr+({(~x, z) : D(z, idealf,M̃Z
(~x, z), preciseZ,M ′Z ,M̃Z

(n, viewf,M̃Z
(~x, z))) = 1) : M̃ ∈M}

has a maximal element d, then by (13), equation (20) would hold with strict inequality, and thus
theorem B.4 would hold even if ε′ = ε. We can ensure this by introducing some additional technical
(but natural) restrictions on C . For instance, suppose that C is such that for every complexity
bound c, the number of machines that have complexity at most c is finite, i.e., for every c ∈ IN ,
there exists some constant N such that |{M ∈ M : ∃v ∈ {0, 1}∗ C (M, v) ≤ c}| = N . Under this
assumption S is finite and thus has a maximal element.

C Proof of Theorem 4.3

We again separate out the two directions of the proof.

Theorem C.1 Let ~M, f,F ,Z be as above, and let ~C be an ~M -acceptable efficient complexity func-
tion, and p a precision function. If ( ~M, comm) is an abort-preserving weak Z-secure computation
of f with computational C -precision p, then for every polynomial T , there exists some negligible
function ε such that ~M is a strong (G ~C ,T ,Z, p)-universal implementation of F with error ε.

Proof Sketch: The proof follows the same lines as that of Theorem B.2. Assume that ~M computes
f with computational ~C -precision p. Since ~M computes f , it follows that for every polynomial T
and game G ∈ G ~C ,T , the action profile induced by ~M in (G, comm) is identically distributed to the
action profile induced by ~ΛF in (G,F). We now show1 that, for every polynomial T , there exists
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some negligible function ε such that ( ~M, comm) is a (G ~C ,T ,Z, p)-universal implementation of F
with error ε. Assume, by way of contradiction, that there exists polynomials T and g and infinitely
many n ∈ N such that the following conditions hold:

• there exists some game G ∈ G ~C ,T with input length n such that ~ΛF is a p(n, ·)-robust Z-safe
equilibrium in (G,F);

• there exists some machine M ′Z ∈MT (n) such that

U
(G,comm)
Z (M ′Z , ~M−Z) > U

(G,comm)
Z (M b

Z ,
~M−Z) +

1
g(n)

. (21)

It follows using the same proof as in Theorem B.2 that this contradicts the weak secure computation
property of ~M . To apply this proof, we need to make sure that the distinguisher D constructed
can be implemented by a polynomial-sized circuit. However, since by our assumption ~C is efficient
and ~u is T (·)-sized computable, it follows that D can be constructed efficiently. We also need to
verify that the “simulator” algorithm M̃Z is a valid strategy in G̃. At first sight, this seems to be
a problem, since the size of M̃Z might be bigger than T (n). Note, however, that the definition of
robust Nash equilibrium lets us consider any game G̃ that is identical to G except for the complexity
profile and the machine set M. In particular, if we let the machine set M in G̃ be the full set of
machines M (just as it was in the proof of Theorem B.2), we ensure that M̃ is a valid strategy in
G̃ (although it might not be one in G).

Strong universal implementation follows in an analogous way.

Theorem C.2 Let ~M, f,F ,Z be as above, let ~C be a ~M -acceptable output-invariant efficient com-
plexity function, and let p be an efficient precision function. If, for every polynomial T , there exists
some negligible function ε such that ( ~M, comm) is a (G ~C ,T ,Z, p)-universal implementation of F
with error ε, then ~M is a weak Z-secure computation of f with computational C -precision p.

Proof Sketch: Suppose, by way of contradiction, that there exist polynomials T and g such that
for infinitely many n ∈ N , there exists a distribution Pr on ({0, 1}n)m ×{0, 1}∗, a subset Z ∈ Z, a
T (n)-sized distinguisher D, and a T (n)-sized machine M ′Z ∈ MT (n) that controls the players in Z
such that, for all machines M̃Z (not necessarily T (n)-bounded),

Pr+({(~x, z) : D(z,real ~M,M ′Z
(~x, z), 1) = 1})

− Pr+({(~x, z) : D(z, idealf,M̃Z
(~x, z), preciseZ,M ′Z ,M̃Z

(n, viewf,M̃Z
(~x, z) = 1))) > 1

g(n) .
(22)

Consider any such n. As in the proof of Theorem B.4, we consider two cases: M ′Z = ⊥ or
M ′ 6= ⊥. In both cases, we construct a game G that contradicts the assumption thatM is a strong
universal implementation. The first thing that needs to be changed is that we need to prove that
the game G constructed is in G ~C ,T ′ for some polynomial T ′. That is, we need to prove that ~u can
be computed by poly-sized circuits (given than D is poly-size computable). We do not know how
to show that the actual utility function uZ constructed in the proof of Proposition B.4 can be made
efficient. However, for each polynomial g′, we can approximate it to within an additive term of

1
g′(n) using polynomial-sized circuits (by using repeated sampling of D(tN , ((t1, . . . , tm),~a, v), 1) to
determine an estimate of PrU (D(tN , ((t1, . . . , tm),~a, v), 1) = 1), and by receiving an estimate of d
as non-uniform advice). This is sufficient to show that there exists some T ′ ≥ T such that we can
approximate ~u to within an additive term of 1

g′(n) , while ensuring that G ∈ G ~C ,T ′ . Additionally, we
need to make sure that the algorithm M ′Z is a valid strategy in G; this easily follows since M ′Z is
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T (n)-bounded, and T ′ ≥ T . Taken together, it follows using the same proof as in Proposition B.4
that there exists some polynomial g′′ such that, in case 1, ~M is not a 1

g′′(n) -equilibrium in (G, comm),

and in case 2, ⊥ is not a 1
g′′(n) -best response to ~M−Z in (G, comm). We reach a contradiction in

both cases.
This completes the proof of Theorem 4.3.
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